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Abstract

Structural estimation inevitably involves a choice of which parameters to treat as homo-
geneous across units, and incorrectly imposing homogeneity can lead to uninterpretable
parameter estimates. To discipline this choice with data, I develop an optimal test
for omitted unit-level heterogeneity applicable to moment condition models. Unlike
existing semiparametric specification tests for heterogeneity, the test asymptotically
maximizes a weighted average power criterion; for the special case of scalar heterogeneity,
the test is the asymptotically uniformly most powerful test. Through simulations, I
show that likelihood-based tests for parameter heterogeneity can severely over-reject
when the likelihood function is misspecified. I study two applications. First, applied
to income dynamics, I use the heterogeneity test as a diagnostic to determine the
appropriate level of aggregation by education groups. Second, firm-level heterogeneity
threatens estimates of production functions and ultimately estimates of the distribution
of markups. Estimating production functions at the subindustry level, I use the test as
a diagnostic for determining the subindustries whose moment conditions are compatible
with the data.
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1 Introduction

The assumption of unit-level parameter homogeneity is common and necessary in econometric
models with nonlinear moment conditions. Examples include homogeneity in the persistence
of income processes across households Guvenen (2009), the dynamic response of investment to
monetary shocks across firms (Ottonello and Winberry, 2020), and output elasticities of inputs
for production functions within industries (Ackerberg et al., 2015). While these moment
conditions are often theoretically motivated by a representative agent, researchers face the
difficult task of accounting for unit-level heterogeneity in the data; incorrectly imposing
parameter homogeneity across units can lead to uninterpretable or inconsistent estimates of
the parameter of interest. In light of this issue, this paper’s main contribution is a statistical
test of parameter heterogeneity for moment condition models.

Concretely, one of this paper’s applications considers the estimation of plant-level markups,
which requires the estimation of the output elasticity of inputs. Here, the researcher is
unwilling to fully specify the distribution of the random variables in the plant’s production
process (e.g. unwilling to impose Gaussian productivity shocks) but is willing to impose
moment conditions for a representative firm (Ackerberg et al., 2015). However, neglecting
firm-level heterogeneity in production functions gives rise to estimates of output elasticities
that, in the limit, fail to converge to an average value and otherwise lack a clear interpretation.
While it is common to address parameter heterogeneity by estimating production functions at
the subindustry level, the test allows the researcher to assess the presence of leftover parameter
heterogeneity within these subsamples. Hence, the test can help determine the subindustries
that give reliable markup estimates and those that are worthy of further analyses.

The proposed test takes the form of a test of over-identifying restrictions. Starting with
moment conditions that are valid under parameter homogeneity, the test exploits Jensen’s
inequality; parameter heterogeneity is detectable in the moment conditions that are nonlinear
in the parameter under test. The test is then constructed using a second-derivative weighted
sum of the normalized fitted moment conditions and admits the interpretation of an estimate
of the variance of the heterogeneous coefficient. Thus, the second derivative matrix is the
only required object beyond those typically computed for the estimation of moment condition
models. Unlike other moment-based specification tests, the proposed test directs power
toward the specific alternative hypotheses that arise from parameter heterogeneity increasing
power. Relative to the omnibus J test specifically, power is directed by placing higher
weight on the moment conditions expected to be misspecified under parameter heterogeneity
and using critical values that exploit the structure of the alternative hypothesis parameter
space. Unlike likelihood-based specification tests, the procedure doesn’t require for there to
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be a correct and fully-specified likelihood function for size to be controlled under the null
hypothesis of no parameter heterogeneity.

The test can be viewed as an asymmetric score test on the limiting distribution of the
fitted moment conditions. The test is based on a moment condition model with parameter
heterogeneity that shrinks with the sample size. Under this framework, the amount of
misspecification is large enough to affect the coverage of conventional GMM confidence
intervals for the mean parameter yet small enough for the power of specifications tests to
be nontrivial. The test is based on studying the limiting distribution of the fitted moment
conditions under this local parameter heterogeneity. A nonstandard feature of this problem is
that the alternative hypothesis parameter space is asymmetric, containing the set of positive
semidefinite matrices as opposed to non-zero matrices in general. The test achieves power
gains by exploiting this asymmetry through a likelihood ratio test for the score vector of
the limiting fitted moment conditions (Silvapulle and Silvapulle, 1995), giving a mixture
chi-squared null distribution. In the special case of testing for scalar heterogeneity, the null
distribution is Gaussian giving a one-sided test that rejects for negative values.

The proposed test is asymptotically optimal for detecting moderate amounts of hetero-
geneity. Adapting the semiparametric framework of van der Vaart (1998), I derive the efficient
score, restricting study to the class of densities that satisfy a set of moment conditions
absent parameter heterogeneity. The composite test for multivariate heterogeneity inevitably
requires trading off power in detecting heterogeneity among the parameters under test (just
as in the multivariate normal means problem of for instance Chapter 15.2 of van der Vaart
(1998)). I show that the proposed test is optimal for detecting moderate amounts of parameter
heterogeneity—moderate in the sense that the test maximizes a weighted average power
criterion for distant alternatives in the limit experiment (Andrews, 1996) yet parameter
heterogeneity is local. For the special case of testing for scalar heterogeneity, I show that the
test is asymptotically uniformly most powerful. These results complement existing specifi-
cation tests, which either require a fully-specified parametric model (necessarily imposing
strong assumptions on the distribution of shocks), have no known optimality properties for
detecting parameter heterogeneity (omnibus misspecification tests like the J test), or are
optimal within narrow classes of tests (e.g. Hahn et al. (2014) is optimal among tests with
limiting chi-squared distributions under the null hypothesis).

The test is most useful when economic theory gives restrictions on a generating model
but is uninformative on the particular distribution of the random variables. As a result, the
test’s power comes from measuring disagreement in a set of moment conditions. In contrast,
textbook parametric tests of the presence of mixtures, like the Neyman and Scott C(α)
test, require moment conditions that are distinct from those used in estimation to also be
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satisfied under the null. These moments are derived from second-order derivatives of the
log likelihood function (Lindsay, 1995). For example, the maximum likelihood estimator of
the mean and variance of a normal random variable are their respective sample analogues.
The corresponding C(α) test of parameter heterogeneity in both parameters however rejects
when the third and fourth moments of the data are incompatible with normality. Therefore,
a test with correct size would require the stronger assumption that the third and fourth
moments are compatible with a Normal distribution under the null hypothesis of no parameter
heterogeneity.

In a Monte Carlo exercise, I show that my proposed test has good finite sample properties
in a short panel AR(2) model. Serving as a benchmark, the AR(2) is a relatively simple model
where it is not known how to estimate the amount of heterogeneity of the autoregressive
parameters absent strong distributional restrictions. By only assuming white noise errors
and without restricting fixed effects, we can derive moment conditions that are valid under
parameter homogeneity. When testing for heterogeneity in both autoregressive parameters,
the empirical size is near its nominal size for Gaussian, Skew-t, and ARCH(1) shocks. Varying
the degree of parameter heterogeneity, the test has higher power than the J test and the test
of Hahn et al. (2014). The simulations demonstrate that a likelihood-based C(α) test for
parameter heterogeneity exhibits a power-robustness tradeoff. While the power of the C(α)
test is higher than the preceding moment-based tests when the shocks are indeed Gaussian,
the C(α) test severely over-rejects otherwise (at worst, with an empirical rejection rate of
100% for a 5% test). Consistent with this paper’s theoretical results, ignoring parameter
heterogeneity causes the conventional confidence intervals to severely under-cover the mean
of the autoregressive parameters.

The paper includes two empirical applications. In the first empirical application, I show
that household-level heterogeneity in the persistence of income shocks is detectable even in
public survey data. I estimate a model of income dynamics using the Panel Survey of Income
Dynamics based on Guvenen (2007) that includes a transitory shock, persistent shock, and
income profile heterogeneity. On the full sample, the J test fails to reject at 5% while the
test for heterogeneity on the persistence of the persistent shock rejects. This result suggests
that a researcher concerned about parameter heterogeneity may fail to detect if reliant solely
on the J test. I then use the heterogeneity test as a data-driven guide to split the sample by
education groups, helping ensure approximate homogeneity within each group. I find that
the assumption of parameter homogeneity approximately holds for the “HS or less,” “Some
college,” and “Bachelor’s or more” education groups.

In the second empirical application, I use Chilean manufacturing data to show that
plant-level heterogeneity in production functions estimated at the finest available level of
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industry aggregation threatens the estimates of markups over marginal costs. Markups are
important to study because their level and dispersion distort allocations and ultimately affect
welfare (Hsieh and Klenow, 2009; Edmond et al., 2023). Under the “production function
approach” (De Loecker and Warzynski, 2012), plant-level production functions are typically
estimated at the industry level. Relative to existing work, I entertain the possibility of
parameter heterogeneity within 4-digit industry categories threatening estimates of markups.
Combined with the J test, I then use the heterogeneity test as a diagnostic for determining
the subindustries whose moments are compatible with the data. I find that 15 of the 50 total
subindustries fail to reject the J test but reject the heterogeneity test at 5%. Notably, none
of these industries reject the test of Hahn et al. (2014) at 5%. Next, I find 13 “well-specified”
subindustries that fail to reject both the heterogeneity and J tests at 5%. Consistent with
the pattern of development during the historical period under study, these subindustries
mostly include those related to food and beverages. Focusing on plants belonging to these
well-specified subindustries, I estimate a median sales-weighted plant-level markup of 1.24
with a 90 minus 50-percentile markup dispersion of 0.42. Investigating the implications of
improper aggregation, I compute markups for plants belonging to these same well-specified
subindustries, but instead plug-in production function estimates estimated using coarser
3-digit industry categories. Here, the median markup rises to 1.37 and markup dispersion
falls to 0.32. Therefore ignoring parameter heterogeneity overstates the median markup and
understates its dispersion.
Literature. The proposed test is most useful in cases where modeling a random coefficient
is difficult, like short dynamic panel models (Arellano and Bond, 1991; Arellano and Bover,
1995; Ahn and Schmidt, 1995; Blundell and Bond, 1998) and the estimation of production
functions (Olley and Pakes, 1996; Blundell and Bond, 2000; Levinsohn and Petrin, 2003;
Ackerberg et al., 2015; Gandhi et al., 2020). These short dynamic panel methods are often
used in characterizing income dynamics (MaCurdy, 1982; Guvenen, 2007). The proposed
test is less useful for cases where there are existing approaches for modeling and estimating a
random coefficient, like short panel models with strictly exogenous regressors (Chamberlain,
1992; Wooldridge, 2005; Arellano and Bonhomme, 2012; Graham and Powell, 2012).

The test can be viewed as a diagnostic before proceeding to technically sophisticated
methods for estimating parameter heterogeneity, especially in the context of dynamic panels.
These techniques require additional assumptions and can be computationally intensive.
Examples include restricting heterogeneity to a finite number of types or limiting heterogeneity
to particular distributional families (Browning et al., 2010; Gu and Koenker, 2017; Alan et al.,
2018; Bonhomme and Manresa, 2015; Bonhomme et al., 2019). Alternatively, Lee (2022)
gives a methodology applied to dynamic panels for computing identified sets. Under further
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restrictions to the random coefficient, Pesaran and Yang (2024) give conditions for estimating
moments of the autoregressive coefficient of a panel AR(1). For richer models however, like
the panel AR(2) considered in the simulation section, it is not known how to estimate the
heterogeneity of the autoregressive parameters without restricting the distribution of shocks.

My proposed test builds on the work of statistical tests for the presence of mixture
distributions in a likelihood-based framework (Neyman, 1959; Chesher, 1984; Lindsay, 1995;
Gu, 2016). Like these tests, my test is designed to detect local parameter heterogeneity,
is based on a framework where parameter heterogeneity shrinks with the sample size, and
requires the study of second-order expansions that lie outside of classical testing frameworks
(like those described in Chapter 9 of Newey and McFadden (1994) in my case). Unlike these
likelihood-based statistical tests, I focus on moment condition models. In particular, my
framework for semiparametric efficiency is closely related to Gu (2016), which analyzes the
C(α) test for parameter heterogeneity in a LeCam framework with a fully-specified parametric
likelihood function. The moment condition model featured in this paper can be viewed as a
semiparametric version where the distribution of the data is an infinite-dimensional nuisance
parameter. To test for multivariate heterogeneity, Gu (2016) also proposes a likelihood ratio
test on a score vector (following Silvapulle and Silvapulle (1995)). The arguments developed
in this paper suggest that their test also maximizes a weighted average power criterion.

Just like this paper, Hahn et al. (2014) proposes a test for parameter heterogeneity in
a moment-based framework. Their test also relies on a second-derivative weighted sum of
normalized moment conditions. Their test however maximizes power relative to the narrow
class of tests with limiting chi-square distributions. This paper’s test in contrasts achieves
gains in power by directing power to alternative hypotheses that would arise from parameter
heterogeneity, yielding semiparametric efficiency in a weighted average power sense.

This paper’s test is a special case of testing problems where the parameter under test is on
the boundary of the parameter space under the null hypothesis (Chernoff, 1954; Bartholomew,
1959; Perlman, 1969; Chant, 1974; Robertson et al., 1988; Andrews, 2001). The limit
experiment of my test reduces to a test of an unknown mean in a multivariate Gaussian
shift experiment with a known variance. Specifically, the null hypothesis is simple while the
alternative hypothesis is a convex cone—included in the framework of Example 1 of Andrews
(1996). Like these references, the limiting distribution of the test statistic is non-Gaussian.

Like prior work on local misspecification in moment condition models (Kitamura et al.,
2013; Andrews et al., 2017; Armstrong and Kolesár, 2021; Bonhomme and Weidner, 2022)),
parameter heterogeneity in this framework induces asymptotic bias of the same order as the
standard errors. Unlike these papers, however, this paper focuses on constructing an optimal
hypothesis test for the specific alternatives that arise from parameter heterogeneity (giving

6



rise to gains in power) rather than studying model misspecification in general. The Taylor
expansions used in this paper are similar to those featured in Evdokimov and Zeleneev (2023),
who correct for scalar errors-in-variables bias for nonlinear moment condition models. This
paper instead uses a multivariate expansion to motivate the construction of an optimal test
of parameter heterogeneity.
Outline. Section 2 illustrates the main ideas of the proposed heterogeneity test in two
motivating examples. Section 3 introduces the heterogeneity test. Section 4 presents a
framework for semiparametric efficiency of the test. Through simulations, Section 5 examines
the finite sample properties of the proposed test and compares with competing approaches.
Section 6 applies the test to applications on income dynamics and markup dispersion. Section
7 concludes.

2 Motivating examples

Section 2.1 introduces a panel AR(2) to aid in discussing the considerations researchers face
in estimating wide dynamic panel models. Section 2.2 illustrate the ingredients required for a
test of parameter heterogeneity in a stylized measurement error model that will be used as a
running example throughout this paper.

2.1 Example: Wide panel AR(2)

This subsection considers a relatively simple stationary wide panel AR(2). We will revisit
the model in Section 5 in a Monte Carlo exercise.

Setting up, the researcher observes an outcome variable yit for units i = 1, . . . , n and time
t = 1, . . . , T . The number of units is large while the number of time periods is small. The
outcome variable is a function of its previous two lags

yit = δi + ϕ1yit−1 + ϕ2yit−2 + εit (1)

for innovations εit ∼ (0, σ2) (i.i.d. over units and white noise over time) and unit fixed
effect δi. Notably, the autoregressive parameters ϕ1 and ϕ2 are taken to be homogeneous
over units. This assumption will be the focus of study for this paper. In addition, the
researcher is unwilling to impose further restrictions on the distribution of the innovations
(like Gaussianity) or restrictions of higher-order moments. Consistent with the estimation of
models of income dynamics (MaCurdy, 1982; Guvenen, 2007), the researcher estimates by
matching the empirical autocovariances in first differences (enabling an unrestricted fixed
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effect) with those implied by Equation 1. The procedure is a form of nonlinear GMM since
the moment conditions are nonlinear in the autoregressive parameters.

While simple, the model is useful to study because it shares attributes with richer models
used in practice. Examples include those of income dynamics (Guvenen, 2009; MaCurdy,
1982), production function estimation (Blundell and Bond, 2000; Ackerberg et al., 2015) and
panel local projections (Ottonello and Winberry, 2020). These models are typically motivated
by moment conditions that are valid for a representative agent where the assumption of
unit-level parameter homogeneity is required for estimation. In these settings, it is typically
unknown how to rewrite the moment conditions to be valid if the homogeneous parameter
were instead modeled as a random coefficient.

Analogously, the assumption of unit-level homogeneity in the autoregressive coefficients
ϕ1 and ϕ2 is potentially problematic when taken to the data. In the limit, Section 3 will
show that ignoring parameter heterogeneity gives rise to autoregressive coefficients that fail
to converge to their average values and otherwise lack a clear interpretation. What’s more,
even in this relatively simple AR(2), it is unknown how to write valid moment conditions for
unit-specific (random coefficients) autoregressive parameters.1 The short panel also rules out
long panel methodologies like estimating and pooling unit-specific AR(2) processes (Pesaran
and Smith, 1995).

Challenges remain in two common solutions for addressing parameter heterogeneity.
First, it is often unclear whether there is leftover heterogeneity after splitting the sample
by observables and estimating the model on these subgroups. Second, additional statistical
restrictions—like restricting parameter heterogeneity to discrete types or likelihood-based
approaches—potentially require specialized knowledge (e.g. the choice of functional forms and
tuning parameters) with intensive computing resources (Bonhomme et al., 2019; Browning
et al., 2010).

A test with power directed toward detecting parameter heterogeneity is a step towards
addressing these challenges. Such a test can help determine if the assumption of parameter
homogeneity approximately holds when estimating a model for a particular subgroup and can
help determine if there is sufficient heterogeneity to justify switching to more sophisticated
statistical modeling approaches.

2.2 Example: Illustrative measurement error model

Having outlined the contexts in which a test with power directed toward parameter hetero-
geneity would be useful, this subsection gives intuition for such a test through an illustrative

1Pesaran and Yang (2024) give moment conditions for a random coefficients AR(1) but doesn’t apply to
models with more complex dynamics.
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Figure 1: Plots of h2(θ) = θ2 and E(y2i) under parameter homogeneity (left panel) and under parameter
heterogeneity (right panel).

measurement error model.
Suppose the researcher observes an i.i.d. sample yi = (y1i, y2i)′ where

yi = h(θi) + εi =
θi

θ2
i

 +
ε1i

ε2i


for h(θ) = (h1(θ), h2(θ))′. The mean-zero measurement error εi is jointly uncorrelated, i.i.d.
over i, and independent of θi. Random coefficient θi has mean θ∗ and equally mixes between
θL and θH . Data y1i and y2i can be interpreted as noisy observations of θi and θ2

i respectively.
Analogous to the more complicated moment condition models used in practice, the specific

distribution of the measurement errors is unknown ruling out likelihood-based approaches.
Restricted to using only the mean of yi, the researcher seeks to answer two questions. First,
what is θ∗? Second, can parameter heterogeneity be detected? Comparing the data E[yi] to
the model h(θ), there are two moments (E[y1i] and E[y2i]) and one unknown (θ∗).

Beginning with the first question, the first moment identifies θ∗ . Since the measurement
error is mean-zero, E[y1i] = E[θi] + E[ε1i] = h1(θ∗) = θ∗. From linearity of h1(θ), θ∗ is
identified under both the null and alternative hypotheses.

Moving to the second question, the second moment can be used to “test” for parameter
heterogeneity where θ∗ is taken from the first moment. Figure 1 plots the data (E[y2i])
against the function h2(θ) = θ2. Absent parameter heterogeneity (left panel), the data is
compatible with θ∗ and intersects h2(θ) at θ∗. In equations, E[y2i] = E[y1i]2. With parameter
heterogeneity (right panel), however, y2i mixes equally between processes with parameters θL

and θH giving the orange horizontal line. Since h2(θ) is convex about θ∗, Jensen’s inequality

9



implies the mean of y2i under parameter heterogeneity is strictly greater than E[y1i]2

E[y2i] = θ2
L + θ2

H

2 > E[y1i]2.

Contrasting E[y1i] with E[y2i] gives a testable restriction.
In fact, the convexity/concavity of h2(θ) about θ∗ and the sign/magnitude of the gap

between E[y2i] and E[y1i]2 are informative of the presence of parameter heterogeneity. The
positive gap between E[y2i] and E[y1i]2 would widen if h2(θ) were more convex about θ∗ and
would shrink if h2(θ) were more linear about θ∗. If h2(θ) were instead concave about θ∗ (like
if h2(θ) =

√
θ), then E[y2i] <

√
E[y1i].

Taking stock. This simple example presents two lessons for more general analysis. First,
applicable to many economic applications, parameter heterogeneity is detectable without fully
specifying the density of εi. Economic theory often restricts the generating model (h(θ) in
this simple example), but is uninformative of the specific distribution. Second, overidentifying
restrictions and nonlinearity of the moment condition in the parameter of interest are key
ingredients for a test of parameter heterogeneity. Jensen’s inequality implies that the sign
and magnitude of misspecification in the nonlinear moment about θ∗ are informative of the
presence of parameter heterogeneity. Shown in Section 3, accounting for the sign of the gap
gives rise to power gains from considering a one-sided versus a two-sided test.

The following section will outline a test of overidentifying restrictions with power directed
toward parameter heterogeneity for a general nonlinear moment condition model. Unlike
the special case of the simple example, the proposed test will consider environments without
a clear separation between “estimation” and “test” moments. I will show that the GMM
estimator lacks a clear interpretation when unit-level parameter heterogeneity is present.

3 Testing for parameter heterogeneity

This section describes the assumptions required for the test of heterogeneity and the con-
struction of the test.

3.1 Generating model

Suppose the researcher observes an i.i.d. sample (x′
i, y′

i)′ for covariates xi and T -dimensional
outcome variable yi. Outcome variable yi is determined by a smooth generating model that
depends on a p-dimensional unit-specific parameter vector θi and vector of unobserved shocks
εi:
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yi = f(xi, εi;θi) (2)

θki = θ∗
k + ukiσk for k = 1, . . . p. (3)

Random vector ui = (u1i, . . . , upi)′ has mean zero with covariance matrix C with 1’s along its
diagonal and is independent of both the covariates xi and unobserved shocks εi. p-dimensional
vector σ = (σ1, . . . , σp)′ has non-negative elements. All random variables are i.i.d. across
units. The generating model is potentially unknown and is subject to restrictions governed by
a set of moment conditions to be described later. Vector θ∗ = (θ∗

1, . . . , θ∗
p)′ is the mean of θi.

The correlation of the elements of the parameter vector θi capture features potentially
present in applications. Consider for example the estimation of production functions. For
sub-industries with advanced manufacturing technologies, capital-intensive firms may be
efficient users of capital or materials. This efficiency may inducing correlation among the
output elasticity of capital and the output elasticity of materials.

It is typically difficult a priori to establish a relationship between parameter heterogeneity
and unobserved shocks εi. The assumption of independence can be viewed as a starting point
for a statistical test.

The researcher has access to an m-dimensional moment vector g(x, y;θ) that has a mean
of zero absent parameter heterogeneity when evaluated at θ∗

E[g(x, y0;θ∗)] = 0m×1 where y0 = f(x, ε;θ∗). (4)

The setup captures the scenario that a researcher has derived a set of moment conditions
would be correct for a representative agent, but is concerned about the assumption of
parameter heterogeneity. These moment conditions are all that is willing to be assumed for
two leading reasons:

1. The researcher is unwilling to fully specify the distributions of xi and εi; the underlying
economic argument yields implications for the generating model but is uninformative
on the specific form of the underlying random variables.

2. Deriving moment conditions that would be valid under parameter heterogeneity either
isn’t possible or would require additional implausible restrictions.

Assumption 3.1. σ = sn−1/4 where p-dimensional vector s is non-negative.

Assumption 3.1 states that parameter heterogeneity shrinks with the sample size. The
assumption is used to establish formal properties of the testing procedure: the amount of
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heterogeneity is large enough to threaten the coverage of the conventional confidence intervals
of a GMM estimator yet small enough that no test can detect it with certainty. As will be
discussed in Section 3.3, the specific rate of n−1/4 is consistent with the literature on testing
for the presence of mixtures in parametric models, as the asymptotic bias will appear in the
moment condition’s second order expansion. Intuitively, the rate can be viewed as a root-n
rate on the variance of the random coefficient since Var(θi) = Λ/

√
n, where Λ := ss′ ⊙ C

and ⊙ is the Hadamard product (the unit-wise product of matrix elements). These different
rates are also a feature in the study of weak instruments, unit roots, and misspecification in
moment condition models (Staiger and Stock, 1997; Elliott et al., 1996; Andrews et al., 2017;
Armstrong and Kolesár, 2021; Bonhomme and Weidner, 2022).

3.2 Setup

Since Equation 4 is all that the researcher is willing to assume in the absence of unit-level
parameter heterogeneity, the researcher would proceed with estimating θ∗ by the generalized
method of moments. The GMM estimator is defined as

θ̂ = arg min
θ∈Θ

1
n

n∑
i=1

g(x, y;θ)′Ŵg(x, y;θ)

for positive semidefinite weight matrix estimator Ŵ.
To establish the upcoming results on the asymptotic behavior of the GMM estimator and

heterogeneity test, Assumption A.1 found in Appendix A.2 adapts the conditions of Newey
and McFadden (1994) to my context. These assumptions restate textbook conditions required
for GMM estimation to counterfactual data y0 generated absent parameter heterogeneity.
For example, Condition (i) of Assumption A.1 states that absent parameter heterogeneity,
parameter θ∗ is identified by the moment condition. Based on these conditions, I define
the expected Jacobian matrix G = E[ ∂

∂θ′ g(x, y0;θ∗)] and the (positive definite) moment
covariance matrix Σ = E[g(x, y0;θ∗)g(x, y0;θ∗)′] using the counterfactual data y0.

The Hessian matrix H (with dimensions m by p(p + 1)/2) is the only new population
object relative to those required for constructing confidence intervals in moment condition
models and measures the curvature of the moment vector about θ∗. For the simpler case of
scalar θ, H = E[ ∂2

∂θ2 g(xi, y0
i ; θ∗)] is an m-dimensional vector and stores the second derivatives

of the moment function with respect to θ evaluated at θ∗. For multivariate θ, H stores its

12



own and cross second partial derivatives for each moment in the moment function:

H =


vech(H1)′

...
vech(Hm)′

 where Hr = E
[

∂2

∂θ∂θ′ gr(xi, y0
i ;θ∗)

]
for r = 1, . . . , m

where the half-vectorization operator vech() stacks the elements of the lower triangular
portion of a square matrix into a column vector. For what follows, the duplication matrix D
maps the half-vectorization operator to the vectorization operator vec(A) = Dvech(A) for
symmetric matrix A.

Assumption A.2 of Appendix A.2 includes regularity conditions that are required for the
consistency under the local alternative.

Assumption 3.2 (Smoothness). For the model in Equation 2, the following conditions also
hold:

i) For all θ ∈ Θ, f(x, ε,θ) is twice continuously differentiable in θ with probability 1.

ii) For all θ ∈ Θ, g(x, y;θ) is three times continuously differentiable in y and θ with
probability 1. For moment r, 0T ×p = ∂2gr(x,y;θ)

∂y∂θ′ .

Assumption 3.2 imposes smoothness on the moment function and generating model. These
conditions are consistent with the applications to dynamic panel models. The conditions are
also required for the Taylor expansions used in proving consistency and asymptotic normality
of the GMM estimator. In particular, the stronger requirement of three time continuous
differentiability of the moment function imposed by the second condition is used in Lemma
A.3 of Appendix A.2 for proving consistency of the sample expected Hessian matrix estimator
Ĥ under local parameter heterogeneity. The requirement 0T ×p = ∂2gr(x,y;θ)

∂y∂θ′ is a common
feature of dynamic panel applications and allows the bias induced by parameter heterogeneity
to be summarized by H alone (see the forthcoming results).2

Example. (Illustrative measurement error model, continued from Section 2.2.) Written in a
moment condition framework, the moment function, expected Jacobian matrix, and expected
Hessian matrix are

g(y; θ) =
 y1 − θ

y2 − θ2

 , G =
 −1
−2θ∗

 , H =
 0
−2

 .

2The condition can be dropped, giving rise to an additional term containing the cross partial derivative of
the generating model.
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The first element of the expected Hessian matrix is zero since the first moment condition is
linear in the parameter θ. To ease exposition, I will take the moment covariance matrix for
this example to equal the identity matrix Σ = I.

3.3 Asymptotic bias and fitted moments

Lemma 3.1. Impose Assumptions 3.1, 3.2, A.1, and A.2. Then,
√

n

n

n∑
i=1

g(xi, yi;θ∗) =
√

n

n

n∑
i=1

[
g(xi, f(xi, εi;θ∗);θ∗) − 1

2H(D′D)vech(Λ)
]

+ op(1).

Lemma 3.1 shows the moment conditions evaluated at the mean parameter θ∗ are
asymptotically biased. The rate of n−1/4 in Assumption 3.1 gives rise to a second order term
coming from the second order Taylor expansion of yi = f(xi, εi;θi) about θ∗. Notably, the
first order term from the Taylor expansion of yi disappears because ui is mean zero and is
independent of xi and εi.3 The rate n1/4, disappearance of a first-order term in a Taylor
expansion, and reliance on the second-order term appear when testing for the presence of
heterogeneous parameters for fully-specified parametric models (Lindsay, 1995; Gu, 2016).
Mirroring the Jensen’s inequality intuition found in the measurement error example of Section
2.2, the asymptotic bias term is nonzero when the moment function is nonlinear in θ about
θ∗ (measured through Hessian matrix H) and under parameter heterogeneity (when the
heterogeneity covariance matrix Λ is non-zero). The duplication matrix D appears because
the expected Hessian matrix H is written using the half-vectorization operator.

Proposition 3.1 (Asymptotic normality). Impose Assumptions 3.1, 3.2, A.1, and A.2.
Then,

√
n(θ̂ − θ∗) d−→ N(1

2(G′WG)−1G′WH(D′D)vech(Λ), avar(θ̂))

where avar(θ̂) = (G′WG)−1G′WΣW′G(G′WG)−1 .

Local parameter heterogeneity induces asymptotic bias in the GMM estimator, which
ultimately affects inference. Proposition 3.1 shows that the asymptotic bias (which is at
the same magnitude as the standard errors) is zero under parameter homogeneity (Λ = 0)

3An alternative approach considers a rate of n−1/2 on the reparametrized ηk = σ2
k and uses L’Hôpital’s

rule (Chesher, 1984; Hahn et al., 2014). Such an approach would give rise to a similar asymptotic expansion
but would require the additional assumption of symmetry on the heterogeneity distribution as discussed in
Lindsay (1995).
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and increases with nonlinearity in the moment condition about θ∗. The asymptotic bias
ultimately affects coverage of the average parameter. Consider a (1 − α) × 100 percent
conventional confidence interval for θ∗, which is computed as θ̂ ± z∗

1−α/2

√
avar(θ̂)/n for the

1 − α/2 quantile of a standard normal distribution z∗
1−α/2. Since the asymptotic variance is

the same as it would be under parameter homogeneity, the conventional confidence interval
necessarily under-covers.

Proposition 3.2 (Fitted moments). Impose Assumptions 3.1, 3.2, A.1, and A.2. Then,
√

n

n

n∑
i=1

g(xi, yi; θ̂) d−→ N(−1
2MWHD′Dvech(Λ), MWΣMW

′)

for MW = (Im − G(G′WG)−1G′W).

Parameter heterogeneity however is detectable in the fitted GMM moments when there
are more moments than parameters. Proposition 3.2 shows that the fitted GMM moments
are generally non-zero. Like the expression for the asymptotic bias of the GMM estimator,
the asymptotic mean of the fitted GMM moments shrinks with the sample size, depends on
the magnitude of parameter heterogeneity (through heterogeneity covariance matrix Λ), and
increases with nonlinearity in the moment condition. Through MW (compare to PW in Newey
(1985)), the term can be interpreted as the residual (scaled by −1/2) of the generalized least
squares regression of HD′Dvech(Λ) on G with precision matrix W. Then, the resulting
residual is non-zero when there are more moments than parameters just as in standard results
on GMM over-identification tests (Hansen, 1982). Note that the asymptotic covariance matrix
given in Proposition 3.2 is singular.
Example. (Illustrative measurement error model, continued) Deviating from the illustration,
now suppose that the researcher attempts to estimate θ∗ using both moments rather than
solely the linear one. Under local heterogeneity, the GMM estimator with an identity weight
matrix is asymptotically biased:

√
n(θ̂ − θ∗) d−→ N

( 2θ∗

4(θ∗)2 + 1Λ,
1

4(θ∗)2 + 1

)
.

The bias depends on the value of θ∗ and on the degree of parameter heterogeneity. The fitted
GMM moments are also off-center

√
n

n

n∑
i=1

g(yi; θ̂) d−→ N

( 1
4(θ∗)2 + 1

−2θ∗

1

 Λ,
1

4(θ∗)2 + 1

4(θ∗)2 −2θ∗

−2θ∗ 1

 )
.

The first linear fitted GMM moment condition is off-center for θ∗ ̸= 0 since the GMM
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estimator is asymptotically biased.

3.4 Constructing a test for parameter heterogeneity

Section 3.4.1 describes a limit experiment that forms the basis of the test for parameter
heterogeneity. Section 3.4.2 introduces the heterogeneity test in the special case of testing for
scalar heterogeneity. Section 3.4.3 generalizes the heterogeneity test to the multivariate case.
See Section 4 for a discussion on semiparametric efficiency.

3.4.1 Limit experiment

The limiting distribution of the fitted GMM moments in Proposition 3.2 summarizes the
over-identifying restrictions of a moment condition model and can be viewed as a limit
experiment. Proposition 3.1 and Lemma A.3 of Appendix A.2 imply that the sample
estimators of the expected Jacobian Ĝ = 1

n

∑n
i=1

∂
∂θ′ g(xi, yi; θ̂), expected Hessian Ĥr =

1
n

∑n
i=1

∂2

∂θ∂θ′ gr(xi, yi; θ̂), and moment covariance Σ̂ = 1
n

∑n
i=1 g(xi, yi; θ̂)g(xi, yi; θ̂)′ matrices

converge in probability to G, Hr, and Σ respectively under the alternative hypothesis.
These matrices can therefore be treated as known for hypothesis testing using the limiting
distribution of Proposition 3.2 noted as X:

X ∼ N(−1
2MWHD′Dvech(Λ), MWΣMW

′). (5)

The above display can be viewed as a limit experiment consisting of a single draw from a
multivariate normal distribution with a known covariance matrix. I formalize this discussion
in Section 4.

The score vector for testing vech(Λ) = 0 in Equation 5 summarizes the deviations of
X from the null hypothesis of no parameter heterogeneity. The score vector in this case
is the gradient of the log-likelihood function of the multivariate normal random variable
described in Equation 5 with respect to vech(Λ) evaluated at vech(Λ) = 0. Proposition A.2
of Appendix A.2 shows that the score vector is equal in distribution (up to a constant) to
the Hessian-weighted sum of the normalized fitted GMM moments

S = (D′D)H′Σ−1X ∼ N(−1
2Ωvech(Λ),Ω) (6)

where Ω = (D′D)H′Σ−1MH(D′D) and M = MΣ−1 . Proposition A.2 also implies that the
score vector is invariant to the choice of weight matrix W so long as G′WG is full rank—the
test statistic remains the same regardless of the choice of weight matrix.
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Assumption 3.3. Ω is full rank.

Assumption 3.3 can be viewed as a joint requirement of the existence of over-identifying
restrictions (through M) and nonlinearity of the moment function (through H). Since Ω

is positive semidefinite by construction, the condition ensures Ω is invertible and positive
definite.

3.4.2 Test for scalar heterogeneity

When Λ is a scalar, a test for heterogeneity based on the limiting score vector of Equation 6 is
one-sided. Under Assumption 3.3, the scalar score S defined in Equation 6 is mean-zero under
the null hypothesis and necessarily has a negative mean under the alternative hypothesis since
Ω is positive. Thus, an infeasible level α test rejects when H′Σ−1X√

Ω < zα where zα gives the α

quantile of a standard normal distribution. Such a test is infeasible because the population
objects are required to be known. A feasible test requires replacing the population matrices
and vectors with their sample analogues (with full conditions specified in the multivariate
test of Definition 3.1 to follow).

Example. (Illustrative measurement error model, continued) For Ω = 4
1+4(θ∗)2 , the sample

analogue of the scalar score is

Ŝ = H′Σ−1
√

n

n

n∑
i=1

g(yi; θ̂) = −2
√

n

n

n∑
i=1

[y2i − θ̂2] d−→ N(−1
2ΩΛ, Ω).

Recall that the expected Hessian matrix H doesn’t depend on on θ̂ since the polynomial
order of the two moment conditions with respect to θ is less than or equal to two (and Σ is
taken to be the identity matrix for ease of exposition). Observe that the first element of the
expected Hessian matrix is zero since the first moment condition is linear in θ. Consistent
with the Jensen’s inequality intuition from Section 2, the score vector examines deviations
between the second and first moment conditions. A feasible asymptotically level α test rejects
when Ŝ/

√
Ω̂ < zα. Consistent with the visual illustration, rejection occurs when the sample

mean of y2i is sufficiently greater than θ̂2.

3.4.3 Test for multivariate heterogeneity

When Λ is instead a matrix (and again imposing Assumption 3.3), the one-sided scalar test
can be generalized by computing the generalized likelihood ratio test statistic on the score
vector of Equation 6. This procedure is based on Silvapulle and Silvapulle (1995) and is
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analogous to the proposal of the parametric test of Gu (2016). I study the power properties of
the test in Section 4.2. For now, begin with defining an infeasible test statistic that requires
knowledge of the population objects

T = S′Ω−1S − inf
Λ∈C

[
S + 1

2Ωvech(Λ)
]′
Ω−1

[
S + 1

2Ωvech(Λ)
]

(7)

where C gives the set of positive semidefinite matrices. A level α test rejects when T > cvα

for critical value cvα and works by contrasting the score vector under the null (first term)
and alternative hypothesis (second term).

Under the null hypothesis, the score vector is mean zero S ∼ N(0,Ω) and T follows
the chi-bar-square distribution χ2(V,C). This distribution is formed as a mixture of chi-
squared random variables with further properties described in textbook references on ordered
regressions like Robertson et al. (1988) and Silvapulle and Sen (2001). More generally, this
distribution appears in tests on the boundary of the parameter space (see for example Chernoff
(1954); Andrews (1996)). Computation of the test statistic involves a convex objective function
with convex constraints and is thus easy to implement using standard optimization software.4

The critical value for a level α test can be computed through simulation: (1) Take draws of
S ∼ N(0,Ω), (2) Using the draws from Step 1, compute the test statistic of Equation 7, (3)
The critical value cvα is the 1 − α quantile of the distribution from Step 2. The infeasible
scalar test outlined in Section 3.4.2 is a special case of the multivariate test outlined here
when α < 0.5.

Accounting for the positive semidefinite constraint of Λ gives rise to power gains relative
to tests with a limiting chi-squared distribution under the null hypothesis. Let’s proceed
term-by-term. The first term of T is S′Ω−1S and can be understood as a measure of general
misspecification of the score. The term examines general deviations of S from zero rather
than solely those arising from positive semidefinite matrices C. By itself, this first term is
the traditional Rao score test statistic (see e.g. Chapter 12.4.3 of Lehmann and Romano
(2022)) and follows a chi-squared distribution under the null hypothesis. The second term
infΛ∈C

[
S + 1

2Ωvech(Λ)
]′
Ω−1

[
S + 1

2Ωvech(Λ)
]

directs power toward the specific alternative
hypothesis of parameter heterogeneity. To see this, suppose the constraint of positive
semidefiniteness of Λ were dropped—that C instead equaled Rp(p+1)/2×p(p+1)/2. Then the
second term would be identically zero, giving rise to a test statistic T that equals the first
term.

Definition 3.1 is the feasible analogue to the infeasible test statistic of Equation 7, replacing
4Throughout this paper, I compute the test statistic using the fmincon function in MATLAB constraining

the eigenvalues of Λ to be non-negative.
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the population objects with their corresponding estimators:

Definition 3.1 (Heterogeneity test statistic). Impose Assumptions 3.1, 3.2, A.1, A.2, and
3.3. Let Sn = D′DĤ′Σ̂−1 1√

n

∑n
i=1 g(xi, yi; θ̂eff). Then, the heterogeneity test statistic is

Tn = S′
nΩ̂

−1Sn − inf
Λ∈C

[
Sn + 1

2Ω̂vech(Λ)
]′
Ω̂−1

[
Sn + 1

2Ω̂vech(Λ)
]

where θ̂eff is an efficient GMM estimator, Ω̂ = (D′D)Ĥ′Σ̂−1M̂Ĥ(D′D) and C is the set of
positive semidefinite matrices.

Critical values for the multi-dimensional heterogeneity test statistic can be computed by
following the same simulation procedure for the infeasible test after substituting Ω with Ω̂.
Remarks

1. The test can be adapted to situations where the researcher is only interested in testing
for parameter heterogeneity for a subset of the estimated parameters. Such a situation
could arise if elements of the parameter vector were already a random coefficient (like
when certain parameters are already modeled as random coefficients) or if a researcher
were interested in directing power in detecting parameter heterogeneity toward a subset
of the parameter vector. In these cases, the rows and columns of the covariance matrix
Λ that correspond to the nuisance parameter are taken to be zero.

Simplifying matrix computations, such a procedure is equivalent to substituting the
Hessian matrix H in the above derivations with a smaller Hessian matrix that only
includes the second derivatives and partial derivatives corresponding to the parameters
under test.

2. A normalized version of the score vector can be interpreted as a single draw from a
multivariate normal distribution centered at vech(Λ)

−2Ω−1S ∼ N(vech(Λ),Ω−1).

Rescaling, the observation can be interpreted as an estimate of parameter heterogeneity
since Cov(θi) = Λ/

√
n. Analogous to the “Moderate Measurement Error” condition

of Evdokimov and Zeleneev (2023), this interpretation is most appropriate when the
true data generating process is well approximated by the generating model of Section
3.1—in particular, that parameter heterogeneity is not too large and that parameter
heterogeneity is independent of the underlying shock.
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3. The proposed heterogeneity achieves power gains over the J test in two main ways.
First, the heterogeneity test is based on the score vector, which weighs the sample
moments evaluated at the GMM estimator by the expected Hessian matrix H. In
contrast, the J test examines deviations of the fitted sample moments weighted by the
inverse moment covariance matrix. The two tests therefore place different weights on
the moment conditions. Second, the heterogeneity test directs power by exploiting the
specific geometry of the alternative hypothesis parameter space through the likelihood
ratio test. The J test looks to general deviations of the moment conditions using
a quadratic form, where the degrees of freedom of the null chi-squared distribution
increases with the number of moment conditions. Thus the heterogeneity test achieves
power gains by looking to a narrower set of alternative hypotheses.

4 Semiparametrically efficient testing

Section 4.1 sets up the framework for evaluating semiparametric efficiency. Section 4.2
discusses the main result, showing that the proposed test maximizes a weighted average
power criterion for distant alternatives. Section 4.3 contains additional technical details.

4.1 Setup

The infinite-dimensional nuisance parameters corresponding to the densities of (x′, y′)′ and
u present a technical challenge in deriving results on asymptotic efficiency. The analysis is
based on a least favorable submodel—one that makes the testing problem the “hardest.” In
this section, I adapt the discussion of Chapter 25 of van der Vaart (1998), allowing for the
second order expansion required by the random coefficient framework and for multivariate
testing.

The generating model of Section 3.1 can be expressed as the semiparametric model
Pθ∗,σ∗,vech(C),pxy ,pu where the densities of data (x′, y′)′ and u are pxy and pu respectively.
These densities can be viewed as infinite-dimensional nuisance parameters. I consider a
one-dimensional submodel indexed by t, which can be viewed as a smooth curve embedded
within a larger semiparametric model that intersects the true model at t = 0. Later, I’ll study
local asymptotic power, examining paths that scale with the size of the sample t = n−1/2.

Specifically, the model parameters drift from their true values (θ∗′,σ∗′)′ as t increases

θt = θ∗ + ct and σt = σ∗ + s
√

t (8)

where σ∗ = 0 (representing the null hypothesis of no parameter heterogeneity), c ∈ Rp, and

20



s is a p-dimensional vector on the non-negative orthant. As will be discussed in Section 4.3,
the curved path for σt is required for the second-order expansion of the semiparametric score
function. The densities pxy,t(x, y;θ) and pu,t(u) are unknown, differentiable with respect to t,
and equal their true values pxy(x, y;θ) and pu(u) when t = 0. Along the path t, the densities
are subject to the moment condition of Equation 4.

Testing for the presence of parameter heterogeneity can then be stated as testing for
the presence of a mixture distribution. Absent parameter heterogeneity (when t = 0), the
density for (x′, y′)′ is q0(x, y) = pxy(x, y;θ∗). With parameter heterogeneity (when t > 0),
the density of (x′, y′)′ mixes over u

qt(x, y) =
∫

pxy,t(x, y;θt + diag(u)σt)pu,t(u)du.

Unlike parametric tests for the presence of mixture distributions, the specific distribution for
pxy,t is unknown. These challenges are discussed in Section 4.3.
Score function. For computation of the semiparametric score function, Assumption A.3
of Appendix A.3 imposes two times continuous differentiability of the density of (x′, y′)′ with
respect to θ. Lemma 4.1 shows that the semiparametric score function can be decomposed
into parametric and non-parametric components:

Lemma 4.1. Let operator ∂+
∂t

give the right-sided partial derivative with respect to t. Im-
pose Assumptions A.3 and A.4. Let (x′, y′)′ be on the support of the probability model
Pθ∗,σ∗,vech(C),pxy ,pu. Then,

∂+

∂t
log qt(x, y) |t=0 = a′ℓ̇(x, y) + η(x, y) and ℓ̇(x, y) =

 ∂
∂θ

p(x, y;θ∗)
1
2(D′D)vech( ∂2

∂θ∂θ′ p(x, y;θ∗))


for a = (c′, vech(Λ)′)′ and measurable function η(x, y) = ∂ log pt(x, y;θ∗)/∂t.

ℓ(x, y) can be interpreted as the score function for the parametric part of the model holding
fixed the non-parametric part, where ∂

∂θ
p(x, y;θ∗) is the score for θ∗ and 1

2(D′D)vech( ∂2

∂θ∂θ′ p(x, y;θ∗))
is the score for σ∗. The latter term arises from the curved path for σt and differs from
standard results on semiparametric models where the parameter of interest is partitioned
from the nuisance parameter (like Chapter 25.4 of van der Vaart (1998)). η(x, y) can be
interpreted as the score function for the density of (x′, y′)′ of the model holding fixed the
parametric part. Notably, the score function for the density of u doesn’t appear in the
semiparametric score. For the results to follow, the technical condition of differentiability in
quadratic mean described in Definition A.1 of Appendix A.3 is required for local asymptotic
normality to hold.
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4.2 Semiparametric efficiency

Having defined the semiparametric submodel, this subsection discusses semiparametric
efficiency of the heterogeneity test in the scalar and multivariate cases. Theorem 4.1, the
main result of this subsection, will show that the heterogeneity test is the most powerful
test for moderate amounts of parameter heterogeneity. For what follows, let t 7→ Pt,a′ℓ̇+η be
the submodel described in Section 4.1 (indexed by t) with arbitrary score function a′ℓ̇+ η

matching the convention of Chapter 25.6 of van der Vaart (1998). The “tangent set” describes
the set of score functions and is (c′,λ′)′ℓ̇+ η for c ∈ Rp, vech−1(λ) ∈ C, and η ∈ Ṗ for the
nuisance tangent space Ṗ. Since C is a convex cone, the tangent set is a convex cone. Lemma
A.4 of Appendix A.3 shows that Ṗ consists of all measurable mean-zero random functions
η(x, y) with finite variance such that 0m×1 =

∫∫
g(x, y;θ∗)η(x, y)pxy(x, y;θ∗)dxdy.

The tool underpinning Theorem 4.1 (to follow) is the asymptotic representation theorem
(see e.g. Theorem 9.3 of van der Vaart (1998)).5 A statistic that converges weakly in the
model Pn−1/2,a′ℓ̇+η is “matched” by some statistic in the limit experiment—in this case, the
limit experiment is a single observation Z of a multivariate normal distribution with mean
vech(Λ) and variance 4Ω−1:

Z ∼ N(vech(Λ), 4Ω−1). (9)

Consequently, no sequence of tests can asymptotically be “better” (as will be defined below)
than the “best” test in the limit experiment. Hence, it suffices to study Equation 9 for
establishing the asymptotic properties of tests. Equation 9 also implies that the discussion of
Section 3.4—particularly on score vector S— focuses on the correct limit experiment. To see
this, a rescaled version of Z given by −1

2ΩZ is equal in distribution to S.
Since the matrix Λ is unknown, Equation 9 shows that tests for multivariate parameter

heterogeneity inevitably require trading off power in detecting heterogeneity among the
parameters under test. Illustrating, one approach for evaluating the tests in the limit
experiment of Equation 9 is to compare the power of a test for one particular pointwise
alternative. Call such an alternative vech(Λ). Then, the Neyman-Pearson lemma implies
that any other test is less powerful than the likelihood ratio test comparing the pointwise
alternative vech(Λ) against the pointwise null 0. However, this criterion would fail to reward
tests with power against other potential alternative hypotheses.

I will instead consider a weighted average power criterion (Andrews and Ploberger,
5Care is required for applying the result. As discussed in the proof of Theorem 25.44 of van der Vaart

(1998), the argument requires adapting results on parametric testing by specifying an orthonormal base of
score functions. The covariance matrix, which is the inverse of the efficient information matrix, arises from a
sufficiently large base.
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1994). The criterion is a weighted sum of the power of a test across potentially many
alternatives. Specifically, I consider a criterion that maximizes power against ellipses centered
about the null hypothesis. Mathematically, let’s define the weight function wr(λ) where
λ is a p(p + 1)/2-dimensional vector. λ corresponds to the lower triangular portion of the
heterogeneity covariance matrix Λ. For radius r > 0, let pλ(λ; r) be the probability density
function of rΩ−1/2ζ where ζ is uniformly distributed on the p(p + 1)/2-dimensional unit
sphere. Let vech−1 reconstruct a symmetric matrix from its half-vectorized form. Then, the
weight function wr(λ) places positive weight on values of the ellipse whose corresponding
matrices vech−1(λ) are positive semidefinite

wr(λ) = 1[vech−1(λ) ∈ C]pλ(λ; r)/K

where K =
∫

1[vech−1(λ) ∈ C]pλ(λ; r)dλ.
To formally establish results, Assumption A.4 of Appendix A.3 gives technical conditions

that allow the interchange of integrals and derivatives. Theorem 4.1 shows that the het-
erogeneity test asymptotically maximizes a weighted average power criterion with weight
function wr(λ) as r diverges:

Theorem 4.1. Impose Assumptions 3.2, 3.3, A.1, A.2, and A.4. Suppose Pt,(c′,λ′)ℓ̇+η is
differentiable in quadratic mean at t = 0 and (c′,λ′)ℓ̇ + η is a member of the tangent
set. Suppose Z ∼ N(λ, 4Ω−1) and π∗(λ; r) is the power function of a level-α test of Z for
H0 : λ = 0 that maximizes the weighted average power criterion

∫
π∗(λ; r)wr(λ)dλ for r > 0.

1. Let P 7→ πn(P ) be a sequence of power functions in the local experiment that is level-α
for each n. Then,

lim
r→∞

lim sup
n→∞

∫
πn(Pn−1/2,(c′,λ′)ℓ̇+η)wr(λ)dλ ≤ lim

r→∞

∫
π∗(λ; r)wr(λ)dλ.

2. Let φhet
n = 1 when the asymptotically level-α heterogeneity test based on Sn rejects and

φhet
n = 0 otherwise. Then,

lim
r→∞

lim
n→∞

∫
En−1/2,(c′,λ′)ℓ̇+η[φhet

n ]wr(λ)dλ = lim
r→∞

∫
π∗(λ; r)wr(λ)dλ.

The first part of the theorem establishes a power bound according to a weighted average
power with weight function limr→∞ wr(λ) with diverging radius. The result can be viewed as
an extension of the scalar semiparametric optimality result of Theorem 25.44 of van der Vaart
(1998) to a multivariate weighted average power criterion applied to the context of this paper’s
setting. The second part of the theorem establishes that the heterogeneity test achieves
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this power bound for distant (through diverging radius r) though local (since heterogeneity
shrinks with the sample size) alternatives. It is in this sense that the heterogeneity test is
optimal against “moderate” amounts of parameter heterogeneity. In addition, the result
shows that the heterogeneity test is asymptotically admissible, that any other test with higher
power for a particular alternative hypothesis necessarily has lower power for another. The
second part of the theorem can be viewed as a multivariate generalization of Theorem 25.45
of van der Vaart (1998) combined with the result of Andrews (1996).

For the special case of scalar heterogeneity, Corollary A.1 found in Appendix A.3 shows
that the scalar test for heterogeneity described in Section 3.4.2 is the locally uniformly most
powerful test. The result can be seen in Equation 9 for a scalar Λ. Here, the best test is
one-sided and doesn’t depend on the particular value of Λ > 0, rejecting for large positive
values of Z. Corollary A.1 shows that the heterogeneity test “matches” this optimal test.
Remarks.

1. In the limit experiment, the test of Hahn et al. (2014) can be matched with a test
that rejects for large values of 1

4Z′ΩZ. As a result, the test rejects for a broader set of
alternatives (for general deviations from 0 and not just those from the constraint of
positive semi-definiteness) and experiences a power loss relative to one that accounts
for the positive semidefiniteness constraint.

2. The analyses in this section extend the parametric analyses of Gu (2016), which
also study heterogeneity tests in a LeCam framework, to moment condition models.
Fully specifying a likelihood as is done in the framework of Gu (2016) gives rise to a
C(α) test based on the second-order derivatives of the log likelihood function. These
moments based on second-order scores are generally distinct from the moments used for
estimation (those from the score function) and often can be interpreted as measuring
the compatibility of higher order moments of the data as later illustrated in Section 5.
The expansion of Lemma 4.1 (to follow) reduces to that of Gu (2016) if the likelihood
were instead fully specified (making the moment restrictions unnecessary).

3. In general, it is difficult to make arguments in favor of one weight function over another
(Andrews, 1998). The particular weight function in Theorem 4.1 can be viewed as the
one that rationalizes the use of the likelihood ratio test—a test that is computationally
tractable and well-studied.

4. The weighted average power result follows from the geometry of the null and alternative
hypothesis parameter spaces. In particular, the null hypothesis is simple while the
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alternative hypothesis space is positively homogeneous since the space of positive
semidefinite matrices is closed under multiplication by positive constants.

Rewriting, the multivariate Gaussian limit experiment can be written as a Gaussian
linear regression model with as many observations as unknowns:

Z = Ω1/2′λ+ η

for independent standard normal vector η and Z = −2Ω−1/2S. Z and Ω1/2′ can be
interpreted as data, while λ can be interpreted as regression coefficients. Thus, the
limit experiment is a special case of Theorem 1 of Andrews (1996).

5. The multivariate test of Gu (2016) also considers a likelihood ratio test based on the
score vector. Consequently, the application of the result of Andrews (1996) in Theorem
4.1 can also be applied, so the test of Gu (2016) also asymptotically maximizes weighted
average power against distant alternatives in a fully parametric baseline model.

6. The scalar optimality result is a direct application of the results on semiparametric
testing in Chapter 25.6 of van der Vaart (1998) while the general multivariate result of
Theorem 4.1 extend these same arguments to the particular multivariate hypothesis
testing problem considered in this paper.

4.3 Proof sketch

This subsection gives theoretical context for Theorem 4.1 by describing the computation of
the efficient influence function and efficient information matrix, which can be viewed as an
information bound for vech(Λ0).

The functional of interest is ψ(Pt,(c′,λ′)ℓ̇+η) = vech(Λ0) +λt for Λ0 = 0. The test consists
of a simple null hypothesis on the boundary versus a composite alternative

H0 : ψ(P ) = 0 p(p+1)
2 ×1 vs. H1 : ψ(P ) ∈ {λ : vech−1(λ) is positive semidefinite} \ 0 p(p+1)

2 ×1. (10)

Looking to the one-dimensional submodel, ψ(Pt,(c′,λ′)ℓ̇+η) = λt belongs to the alterna-
tive when t > 0 while ψ(P0,(c′,λ′)ℓ̇+η) = 0 p(p+1)

2 ×1 belongs to the null hypothesis. I con-
sider a neighborhood of the true model that shrinks with the sample size t = n−1/2, so
ψ(Pn−1/2,(c′,λ′)ℓ̇+η) = λn−1/2.

Analogous to the information matrix in likelihood theory, the efficient information matrix
can be interpreted as the summary of the information available on vech(Λ0). To compute, note
thatψ(Pt,(c′,λ′)ℓ̇+η) is differentiable in the ordinary sense at t = 0 as ∂+ψ(Pt,(c′,λ′)ℓ̇+η)/∂t |t=0 =
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λ. Then, the Riesz representation theorem implies vech(Λ0) is differentiable as a parameter
on the model6 if and only if there exists some function ψ̃(x, y), the efficient influence function,
such that

λ = E[ψ̃(x, y)(a′ℓ̇(x, y) + η(x, y))].

Setting λ to zero, it suffices to find ψ̃(x, y) such that E[ψ̃(x, y)η(x, y)] = 0 and
E[ψ̃(x, y) ∂

∂θ′ py(x, y;θ0)] = 0. Lemma A.6 in Appendix A.3 finds such a function ψ̃(x, y),
showing that the efficient information matrix and efficient influence function are

Ĩ = Ω/4 and ψ̃(x, y) = −1
2 Ĩ−1(D′D)H′Σ−1Mg(x, y,θ∗).

The efficient information matrix reflects the information loss from ignorance of the density
pxy(x, y) and parameter θ∗. The inverse of the efficient information matrix is an informational
bound on vech(Λ0) which is exactly the covariance of the limit experiment Z described in
Equation 9.

5 Simulations

In this section, I show that the moment-based testing procedure has good finite sample
properties in a panel AR(2) like that considered in Section 2.1. While likelihood-based tests
have higher power when the distribution of shocks is correctly-specified, I show that the
likelihood-based C(α) test over-rejects when the likelihood function is incorrectly specified.
Furthermore, the simulations illustrate that neglecting parameter heterogeneity can lead to
severe under-coverage of the mean autoregressive coefficient under conventional confidence
intervals.
Setup. I consider a stationary random coefficients panel AR(2) with T = 10 periods and
6000 observations

yit = ϕ1iyit−1 + ϕ2iyit−2 + εit, ϕ1i ∼ N(.5, δ2), ϕ2i ∼ N(.3, δ2). (11)

Parameter heterogeneity is determined by the parameter δ, which ranges from 0 to 0.16.
Mean zero and unit variance shocks εit are independent over units i and are white noise over
time t.

Motivated by features of the data in macroeconomic applications, I consider shocks εit

that are (1) i.i.d. Gaussian, (2) i.i.d. Skew-t with 8 degrees of freedom and shape parameter
6See page 363 of van der Vaart (1998) for a more detailed discussion.
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Figure 2: Empirical rejection probabilities by test and shock distribution. The horizontal axis gives the
standard deviation of the random coefficient δ and the vertical axis gives the empirical rejection probability.
“Het” gives this paper’s moment-based heterogeneity test, “Gaussian” gives a Gaussian likelihood C(α) test,
“J” gives a GMM Sargan-Hansen J-test, and HNS gives the Hahn et al. (2014) test.

of -0.5 (Hansen, 1994), and (3) ARCH(1) (with ARCH parameter 0.4) shocks. Shocks of the
first type serve as a benchmark. Shocks of the second type are skewed and have tails that
are heavier than those of a normal distribution. Shocks of the third type are conditionally
heteroskedastic, mimicking features found in time series datasets. I consider a two-step
efficient GMM estimator (that neglects parameter heterogeneity) whose moments are formed
by matching autocovariances of E[∆yit∆yit−ℓ]. Just as in the illustration, I consider the
model in first differences to mimic dynamic panel applications that use first differences to
eliminate unit-specific fixed effects.

I compare this paper’s test to three alternative testing procedures. The first test is the C(α)
test of Gu (2016). For comparability, the likelihood-based test is based on the stationary panel
AR(2) of Equation 11 in first differences under the assumption of homogeneous autoregressive
coefficients and i.i.d. Gaussian shocks. The test represents a researcher who is interested in
testing for parameter heterogeneity where shocks are potentially non-Gaussian, but proceeds
anyway with a Gaussian likelihood-based test. The second test is a standard J-test of
overidentifying restrictions, and represents a textbook procedure for model misspecification.
The third test is the heterogeneity test of Hahn et al. (2014) (HNS), formed as a GMM
Lagrange Multiplier test with a chi-squared distribution under the null. HNS serves as a
comparison for the value of considering an unconventional test statistic over a two-sided test
that doesn’t exploit the structure of the alternative hypothesis parameter space.

From Figure 2, all four tests control size under Gaussian shocks. Exploiting deviations in
higher-order moments (like kurtosis), the Gaussian C(α) test is also more powerful across
δ. Unlike the GMM tests, size control however is lost for the C(α) test under skew-t and
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Figure 3: Empirical coverage by parameter and shock type. The horizontal axis gives the standard deviation
of the random coefficient δ and the vertical axis gives the empirical coverage for 95% confidence intervals.

ARCH(1) shocks—the same sensitivity to higher order moments that give rise to power gains
in the Gaussian case make the test vulnerable to misspecification of the shock distribution.
The three GMM tests control size under non-Gaussian shocks, with the J giving the lowest
power across values of δ. The J test’s power is spread across many possible alternatives, not
just parameter heterogeneity. Finally, the power gains of my proposed test over HNS suggest
the value of taking the positive semidefinite constraint into account.

Consistent with the theoretical results on the asymptotic bias of GMM estimators described
in Section 3, Figure 3 shows that parameter heterogeneity affects the estimator’s finite
sample properties. Under the three choices of shocks, the estimator’s empirical coverage for
pointwise conventional confidence intervals is near their nominal coverage for small amounts of
parameter heterogeneity. As parameter heterogeneity increases (particularly above δ = 0.08),
the empirical confidence intervals potentially severely under-cover. These results illustrate
that neglecting parameter heterogeneity can potentially lead to severely distorted inference
when the parameter of interest is the mean autoregressive parameter.

6 Empirical applications

I demonstrate the applied utility of my test with two applications. First, I show how the
proposed test can be used as a diagnostic for determining the appropriate level of aggregation
in characterizing income dynamics. Second, I show that neglecting plant-level heterogeneity
in the output elasticity of variable inputs affects estimates of the distribution of markups.
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6.1 Income dynamics

Under incomplete markets, earnings risk is a critical ingredient in a large range of economic
questions—including understanding consumption/wealth inequality (Heathcote et al., 2010),
designing counterfactuals for tax policy (Conesa et al., 2009), and the determination of asset
prices Constantinides and Duffie (1996). Researchers have recognized the need to allow for
heterogeneity across some dimension, like education.

In this section, I show that unit-level heterogeneity in the persistence of income shocks is
detectable even in a standard survey dataset. Across different aggregations of educational
subgroups, I show how the proposed test can be used as a guide for choosing appropriate
sample splits for characterizing income dynamics by educational groups.
Data. Following Guvenen (2009), my sample is the Panel Survey of Income Dynamics,
including household heads that worked between 520-5110 hours per year, with average hourly
earnings between $2 and $400 (in 1992 terms), and excluding the poverty sample. yit gives
labor income excluding wages, bonuses, commissions, and the labor portion of farm/business
income.
Estimation. I consider a model for income dynamics with income profile heterogeneity

yit = δi + δt + βihit + ηit + zit, zit = ρzit−1 + εit

for transitory shock ηit, autoregressive income shock zit, unit fixed effect δi, and time fixed
effect δt. hit is tenure (proxied by age) where βi is a random coefficient that varies by
individual with variance Var[β2

i ] = σ2
β. Mean zero shocks ηit and εit are independent across

units, are jointly independent, and white noise over time. The white noise condition allows
for conditional heteroskedasticity (like ARCH dynamics). Unlike likelihood-based tests, I
do not need to commit to a specific model for modeling heteroskedasticity or to the shock’s
specific distribution. Averaging over units, let E[η2

it] = σ2
η and E[ε2

it] = σ2
ε .

Similar to Guvenen (2009), I estimate parameters (ρ, σ2
β, σ2

η, σ2
ε)′ by matching empirical

and model-implied autocovariances. For ỹit = yit − 1
n

∑n
i=1 yit, I consider the lag 0 through

lag 11 autocovariances of ∆ỹit = ỹit − ỹit−1:

E[(∆ỹit)2] = σ2
β + 2σ2

η + 2 σ2
ε

1 + ρ

E[(∆ỹit)(∆ỹit−ℓ)] = σ2
β − 1[ℓ = 1]σ2

η + ρℓ σ2
ε(ρ − 1)
ρ + 1 , ℓ ≥ 1.

For the m = 12 moments, the p = 4 model parameters are estimated using two-step
efficient GMM. To coarsely capture time variation in parameters, I estimate separately on
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Spec. tests
p pHNS pJ ρ SE n V̂ar(ρi)

1968–1980
All 0.01 0.02 0.08 0.68 0.06 809 0.18

Some college or less 0.01 0.02 0.06 0.55 0.06 599 0.25
HS or less 0.22 0.44 0.36 0.54 0.08 309 –
Some college 0.72 0.54 0.42 0.87 0.13 173 –

Bachelor’s or more 0.09 0.17 0.71 0.95 0.25 167 –
1980–1992
All 0.02 0.04 0.40 0.74 0.05 1022 0.09

Some college or less 0.03 0.07 0.31 0.73 0.06 652 0.10
HS or less 0.18 0.36 0.68 0.73 0.09 262 –
Some college 0.75 0.49 0.31 0.79 0.11 207 –

Bachelor’s or more 0.20 0.41 0.34 0.76 0.08 302 –

Table 1: Estimation results for the model of income dynamics by education group. The first three columns
give p-values for this paper’s heterogeneity test, the Hahn et al. (2014) procedure, and the J test respectively.
The last three columns give point estimates for persistence ρ (under the assumption of within-group parameter
homogeneity), the associated standard error, and sample size n. The final column gives an estimate for the
variance of the random coefficient.

the 1968-1980 and 1980-1992 subsamples.7

Results. I test whether parameter ρ is homogeneous across households. The parameter
is important for macroeconomic models with households, as it is a crucial determinant for
a household’s marginal propensity to consume. Motivated by the education subsamples
often used in the literature on income dynamics (Hubbard et al., 1994; Carroll and Samwick,
1997; Guvenen, 2007), I illustrate how the test for parameter heterogeneity can be used as a
diagnostic for determining the appropriate level of aggregation.

Including all households, Table 1 shows that the estimated persistence in both subperiods
is around 0.7. Moreover, the J test fails to reject the null hypothesis of correct specification
at 5%. However, the null hypothesis of homogeneity across households is rejected at 5%
for both this paper’s test and the test of Hahn et al. (2014). These results indicate that
a researcher interested in testing for parameter heterogeneity using only the J test would
potentially miss it in this context. Rescaling this paper’s heterogeneity test statistic (see
Remark 2 of Section 3.4) gives a noisy estimate of parameter heterogeneity—the variance of
the persistence parameter across units is estimated to be 0.18 (with a 90% confidence interval
of [0.05, 0.31]) for the 1968-1980 sample versus 0.09 for the 1980-1992 sample (with a 90%
confidence interval of [0.02, 0.16]). Thus, more granular subsamples are needed.

Next, I split the sample into the “Bachelor’s or more” and “Some college or less” categories.
7Extending the analyses to richer administrative data, like that of Guvenen et al. (2021), with more

granular sample splits and alternative estimators would be a valuable area of future work.
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Here, my test rejects the null hypothesis of parameter homogeneity for the “some college or
less” category, while fails to reject for the “Bachelor’s or more” category at 5%. These results
suggest that further splits for the “Some college or less” category are needed. In contrast,
the Hahn et al. (2014) test fails to reject parameter homogeneity for the “Some college or
less” category in the 1980-1992 subperiod, consistent with the gain in power from considering
a one-sided versus a two-sided test is substantive. Finally, my test fails to reject parameter
homogeneity after splitting the “Some college or less category” into “HS or less” and “Some
college.” The assumption of parameter homogeneity appears to approximately hold for these
more granular education groups.

Summarizing, estimating a single model of income dynamics for all households masks
education group-level heterogeneity in the persistence of income shocks—particularly in the
earlier 1968–1980 sample. I show how this paper’s test for parameter heterogeneity can be
used as a data-driven diagnostic for determining sample splits.8

6.2 Markup heterogeneity

Competition between firms combined with the possibility of new entrants ensures that firms
set prices that reflect marginal costs. Without competition, firms gain market power and
are able to set higher prices—ultimately affecting consumer welfare, discouraging innovation,
and decreasing the investment in capital (De Loecker et al., 2020). However, despite the
importance of understanding market power, there are substantial challenges in estimating
markups over marginal cost.

In this subsection, I give practical guidance for estimating output elasticities, one of the
main challenges in estimating firm-level markups. Estimation requires the assumption of
homogeneity of the output elasticity of inputs at the industry level. However, even within
granular industry groups, there is reason to expect these elasticities to differ across plants (e.g.
plants that produce dissimilar products with distinct input mixes, plants that produce similar
products using different production processes). Incorrectly imposing parameter heterogeneity
gives rise to unreliable estimates of these output elasticities and consequently unreliable
estimates of markups. The level and dispersion of markups distort allocations ultimately
affecting welfare (Hsieh and Klenow, 2009; Edmond et al., 2023).

While researchers have recognized the importance of aggregation in estimation (see
Section 2.2 of Fernald et al. (2025) for a review), I present evidence of unobserved plant-level
heterogeneity in production functions even at the (most granular) four-digit industry level. I

8Like the usage of other specification tests in applied work, multiple testing (arising from comparing p
values across subsamples) is also a concern in this application (see the discussion in Chapter 9 of Lehmann
and Romano (2022)).
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then estimate the distribution of markups for subindustries where the moment conditions are
compatible with the data.
Data. My dataset is the Chilean annual manufacturing census managed by Encuesta
Nacional Industrial Anual (ENIA). The survey is a common benchmark in the production
function estimation literature (Liu, 1993; Levinsohn and Petrin, 2003; Gandhi et al., 2020).
The census’ coverage is extensive, covering all Chilean manufacturing plants with at least
10 employees. I focus on the ten year sample from 1987-1996, giving approximately 5000
plants per year. Each plant is associated with a four-digit International Standard Industrial
Classification Revision 2 code (ISIC4).
Estimation. To estimate markups, I consider the production approach (Hall et al., 1986;
Hall, 1988, 1990; De Loecker and Warzynski, 2012). The main assumption is that firms
are cost-minimizing and are price takers in the input market. This approach to markup
estimation is attractive since the assumption of constant returns to scale needn’t be imposed
and the user cost of capital needn’t be observed. Firms set marginal products equal to the
factor prices. Their first order condition implies that the markup of firm i equals the output
elasticity of materials βm

it divided by the revenue share of materials

µit = βm
it

sm
it

. (12)

While sm
it is taken from the data, βm

it must be estimated.
I consider a Cobb-Douglas production function. For plant i and time t, I observe output

yit, materials mit, capital kit, and labor ℓit. Plants are subject to unobserved productivity
shocks ωit that follow an AR(1) process with productivity innovation ζit. In addition, the
production function is subject to measurement error εit. In logs, the production function for
a plant in industry j is

yit = βk
j kit + βℓ

jℓit + βm
j mit + ωit + εit and ωit = ρj0 + ρj1ωit−1 + ζit. (13)

The elasticity βm
j is used to estimate markups according to Equation 12. With the short

estimation window of ten years, the production function coefficients are taken to be con-
stant over time. While the production function coefficients will be taken to vary across
4-digit subindustries, we are interested in testing if there is remaining heterogeneity within
subindustries.

Matching Raval (2023) and De Loecker et al. (2020), I estimate the production function
parameters using the control function approach of Ackerberg et al. (2015). These more
sophisticated approaches are required because the productivity process is partially observed
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by firms that choose their own inputs. As a result, ordinary least squares estimation of the
production function elasticities is biased. For brevity, I suppress the industry subscripts j.
There are two sets of moment conditions that are valid absent plant-level production function
heterogeneity. For the first set, the assumptions of Ackerberg et al. (2015) imply that output
can be decomposed as

yit = ϕt(ℓit, mit, kit) + εit (14)

where the measurement error εit is uncorrelated with some flexible function ϕt(ℓit, mit, kit).
Consistent with applied practice, I take ϕt(ℓit, mit, kit) to be a second-order polynomial in
the inputs.9 For the second set, Equations 13 and 14 imply that the productivity shock
is ωit = ϕt(ℓit, mit, kit) − βℓℓit − βmmit − βkkit. After substituting, the innovation to the
productivity process is ζit = ωit −ρ0 −ρ1ωit−1 = [ϕt(ℓit, mit, kit)−βℓℓit −βmmit −βkkit]−ρ0 −
ρ1[ϕt−1(ℓit−1, mit−1, kit−1) − βℓℓit−1 − βmmit−1 − βkkit−1]. Then, the second set of moment
conditions exploit the uncorrelatedness of the unobserved productivity innovation ζit with
the lagged inputs and contemporaneous capital:

0 = E
[
ζit(1, kit, ℓit−1, mit−1, ϕt−1(ℓit−1, mit−1, kit−1), βkkit−1, βℓℓit−2, βmmit−2)

]
. (15)

The first five moments in Equation 15 are similar to those featured in Equation 28 of
Ackerberg et al. (2015). Capital enters the moment condition contemporaneously since it
is inflexible, while labor and materials enter with lags since they are flexible. The final
three are lagged contributions of capital, labor, and materials to output and are included to
provide over-identifying restrictions. These moments’ nonlinearity in βℓ, βm, and βk allow for
this paper’s heterogeneity test to be applied. Pooling observations over time, the model is
estimated using the generalized method of moments with the efficient choice of weight matrix
(consistent with the discussion of Wooldridge (2009)) for each 4-digit ISIC category (ISIC4).
Results. Ignoring within–subindustry heterogeneity in production function coefficients gives
rise to misspecified markup estimates that are difficult to characterize. From Equation 15,
markup estimates are directly related to the output elasticity. Thus, if the output elasticities
were incorrectly taken to be homogeneous (even at the mean), the effect on the estimated
distribution of markups is ambiguous, ultimately depending on the joint distribution of
the output elasticity and the shares sm

it . Unfortunately, this joint distribution is difficult to
characterize absent additional information.

Consequently, the results to follow focus on using specification tests to guide which
subindustries fit the data well. Specifically, I demonstrate how the J-test and heterogeneity

9ϕt contains an additive time fixed effect where remaining polynomial coefficients are time-invariant.
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Misspecified Heterogeneous Well-specified

1. Grain mill products
2. Manufacture of bakery prod-

ucts
3. Manufacture of food products

not elsewhere classified
4. Malt liquors and malt
5. Soft drinks and carbonated

waters industries
6. Spinning, weaving and finish-

ing textiles
7. Knitting mills
8. Manufacture of wearing ap-

parel, except footwear
9. Manufacture of footwear, ex-

cept vulcanized or moulded
rubber or plastic footwear

10. Manufacture of pulp, paper
and paperboard articles not
elsewhere classified

11. Manufacture of paints, var-
nishes and laquers

12. Manufacture of plastic prod-
ucts not elsewhere classified

13. Manufacture of structural clay
products

14. Manufacture of cement, lime
and plaster

15. Manufacture of sports goods
16. Manufacture of furniture and

fixtures primarily of metal
17. Manufacture of structural

metal products
18. Manufacture of fabricated

metal products except machin-
ery and equipment not else-
where classified

19. Manufacture of metal and
wood working machinery

20. Machinery and equipment ex-
cept electrical not elsewhere
classified

21. Ship building and repairing
22. Manufacture of motor vehicles

1. Wine industries
2. Manufacture of made-up tex-

tile goods except wearing ap-
parel

3. Manufacture of carpets and
rugs

4. Sawmills, planing and other
wood mills

5. Manufacture of wooden and
cane containers and small cane
ware

6. Manufacture of wood and cork
products not elsewhere classi-
fied

7. Manufacture of pulp, paper
and paperboard

8. Manufacture of containers and
boxes of paper and paper-
board

9. Printing, publishing and allied
industries

10. Manufacture of soap and
cleaning preparations, per-
fumes, cosmetics and other toi-
let preparations

11. Manufacture of non-metallic
mineral products not else-
where classified

12. Manufacture of cutlery, hand
tools and general hardware

13. Reaction initiators, reaction
accelerators and catalytic
preparations n.e.c. or included

14. Manufacture of agricultural
machinery and equipment

15. Manufacture of motorcycles
and bicycles

1. Slaughtering, preparing and
preserving meat

2. Manufacture of dairy products
3. Canning and preserving of

fruits and vegetables
4. Canning, preserving and pro-

cessing of fish, crustaces and
similar foods

5. Manufacture of vegetable and
animal oils and fats

6. Manufacture of cocoa, choco-
late and sugar confectionery

7. Manufacture of prepared ani-
mal feeds

8. Distilling, rectifying and
blending spirits

9. Manufacture of furniture and
fixtures, except primarily of
metal

10. Manufacture of drugs and
medicines

11. Manufacture of chemical prod-
ucts not elsewhere classified

12. Organic composite solvents
and thinners, not elsewhere
specified or included; prepared
paint or varnish removers

13. Manufacture of special indus-
trial machinery and equip-
ment except metal and wood
working machinery

Table 2: Summary of specification tests (5% significance level). “Misspecified” lists ISIC4 categories that reject
the J test. “Heterogeneous” lists ISIC4 categories that fail to reject the J test but reject the heterogeneity
test. “Well-specified” lists ISIC4 categories that fail to reject both the J test and heterogeneity test.
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tests can be used as diagnostics for determining which granular 4-digit (ISIC) categories are
compatible with the Ackerberg et al. (2015) moment conditions. The results are subject to
two caveats. First, since the null hypothesis of both tests is of correct specification, failure
to reject is an indication of the absence of evidence for rejection and not of proof of correct
specification. Second, like Section 6.1 and in the use of specification tests in applied work,
multiple testing arises here too.

Starting with the J-test, the first column of Table 2 lists the ISIC4 categories that reject
the J test at 5% (see Tables 3 and 4 found in Appendix B.1 for the full results). There are
several types. First, the column includes categories with plants that have complex production
processes (like ship-building/repairing and the manufacture of motor vehicles) that potentially
don’t satisfy the requirement of input flexibility—like through unions10 or material inputs
contracted in advance. Second, the list includes categories with plants that face market power
in inputs due to high transportation costs (like limestone in cement manufacturing) (Beach
et al., 2000). These plants rely on a small number of local suppliers, creating exposure to
local supply constraints and inflexibility arising from market power. Third, the list includes
catch-all categories (like manufacture of food products not elsewhere classified) that include
dissimilar plants.

Next, the second column of Table 2 lists the ISIC4 categories that fail to reject the J test
at 5% but reject the heterogeneity test at 5%. This group can be interpreted as categories
whose moments are consistent with plant-level heterogeneity in production functions but are
otherwise well-specified. Notably, Tables 3 and 4 show that none of the fifteen categories
reject the Hahn et al. (2014) heterogeneity test at 5%, consistent with the power gains of
this paper’s heterogeneity test from considering narrower alternatives. The column includes
broad categories with plants that manufacture dissimilar products that require distinct
input mixes (like motorcycles/bicycles and agricultural machinery/equipment). The list
also contains industries that are related to lumber and paper products, consistent with
the substantial structural changes in these industries in Chile during the sampling period.
The late 1980s and 1990s were marked by a sharp increase in foreign investment, leading
to increased mechanization and automation throughout the production process (Klubock,
2014). The heterogeneity test is potentially capturing heterogeneity arising from plants with
capital-intensive processes supported by foreign investment and pre-existing labor-intensive
ones.

The final column of Table 2 lists the ISIC4 categories that fail to reject both the J test and
10Union rights were reinstated by the Pinochet regime in 1979, though in a weaker form relative to the

1960s and the early 1970s. Nonetheless, strikes still occurred (3.5 per 100,000 workers in 1996 versus 9.9 in
the 1960s) suggestive of labor rigidities in industries with firm-level unionization. See Table 4 of Edwards
et al. (2000) for details on strike activity and the text for a detailed discussion of the historical context.
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Figure 4: Estimated sales-weighted distribution of plant-level markups µit for plants belonging to categories
listed in Column 3 of Table 2.

the heterogeneity test at 5%. These industries can be interpreted as those that are compatible
with the Ackerberg et al. (2015) moment conditions (and consistent with the requirement of
within-ISIC4 category production function homogeneity). This list is primarily composed of
industries that are related to food products (like slaughtering/preparing/preserving meat,
manufacture of dairy products, and canning/preserving of fruits/vegetables). In the period
under study, plants in this category have consistent manufacturing standards and competitive
input markets, resulting in goods with similar input mixes. These results are consistent with
the historical development of the food industry in Chile. By the early 1990s, three-quarters
of fresh milk were produced by industrial dairy establishments (Llorca-Jaña et al., 2020).

Guided by Table 2, Figure 4 gives the sales-weighted distribution of plant-level markups
for the subset of plants that belong to industries that fail to reject both the J test and
the heterogeneity test at 5%. The median markup for plants belonging to these industries,
weighted by sales, is 1.24 with a 90 minus 50-percentile markup dispersion of 0.42. These
values are comparable to the full distribution of plant-level markups under the restrictive
assumption of no sample selection—that the distribution of markups for plants belonging to
“well-specified” industries are no different than the distribution of markups for plants in the
full sample.11

As a counterfactual, now suppose that the 4-digit subindustries categorized as “well-
specified” were indeed correct and suppose that the researcher estimated production functions
using the coarser 3-digit subindustries instead. Using these production function coefficients to
compute markups for the plants belonging to the same four-digit subindustries, the median

11For the goal of estimating the full distribution of plant-level markups, additional steps include considering
(1) alternative approaches to production function estimation for plants belonging to the “misspecified” category
and (2) splitting the subindustries belonging to the “heterogeneous” category by additional observables (like
size). These steps are left for future work.
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markup is now 1.37 with a 90 minus 50 percentile markup dispersion of 0.32. Thus using the
incorrect level of aggregation overstates the median markup while understating the dispersion.
Viewed as welfare costs (as in the model of Edmond et al. (2023) for example), the researcher
would overstate the “aggregate markup as uniform output tax” channel but understate the
“misallocation of factors of production” channel.

Testing for omitted parameter heterogeneity can be applied to other specifications used in
the literature on markup estimation. Alternative specifications include computing markups
using labor rather than materials in Equation 12, using a translog production function instead
of a Cobb-Douglas one, using other unconditional moments for the estimation procedure of
Ackerberg et al. (2015) (like writing the second stage moments using ζit + εit rather than ζit

alone), other data sources, and other estimators (like the dynamic panel estimator of Blundell
and Bond (2000) or the estimator of Gandhi et al. (2020)). See Fernald et al. (2025) for a
comprehensive review.

7 Conclusion

This paper proposes a test for of over-identifying restrictions with power directed toward
detecting moderate amounts of parameter heterogeneity. The test is particularly useful for
contexts where economic theory gives moment conditions that are valid under a represen-
tative agent, but is uninformative of the particular distribution of the shocks—a common
feature of dynamic panel models. Adapting these moment conditions to allow for parameter
heterogeneity is often difficult. What’s worse, incorrectly imposing parameter homogeneity
gives rise to parameter estimates that are difficult to interpret and fail to converge to the
average parameter. Here, the test can be used as an initial data-driven diagnostic before
splitting a sample by observables or proceeding to sophisticated methodologies requiring
additional statistical assumptions.

Exploiting Jensen’s inequality, the test statistic takes the form of a second-derivative
weighted average of the normalized, fitted moment conditions. The test achieves power gains
by focusing on alternatives compatible with parameter heterogeneity, a form of testing on the
boundary of the parameter space. After normalizing, the test statistic can also be interpreted
as the covariance of the random coefficients. I prove that the test asymptotically maximizes
a weighted average power criterion, and for the special case of testing for scalar heterogeneity,
the test is the asymptotically uniformly most powerful test. Simulations show power gains of
the proposed test relative to other semiparametric tests, and that incorrectly specifying the
likelihood function for a likelihood-based heterogeneity test can lead to severe over-rejection.

Applied to a model of income dynamics, I use the test as a data-driven diagnostic for
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determining appropriate sample splits and find evidence of heterogeneity in the persistence of
income shocks by education group. In addition, I construct estimates of plant-level markups,
which requires the assumption of the homogeneity of production function elasticities across
plants within an industry. Using the proposed test, I find evidence of plant-level heterogeneity
in production function elasticities within granular 4-digit industry categories. I then use
the test as a guide for constructing markup estimates for plants belonging to the subset of
industries that fit the representative firm model.
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A Theoretical results

Section A.1 contains matrix results used in subsequent proofs. Section A.2 contains the
assumptions and results for the test of multivariate heterogeneity. Section A.3 contains results
on semiparametric efficiency.

A.1 Matrix results

For this subsection, let Σ be a positive definite matrix where G′Σ−1G is invertible and
M = I − G(G′Σ−1G)−1G′Σ−1. Similarly, suppose W is positive semidefinite, G′WG is
invertible, and let MW = I − G(G′WG)−1G′W. Let † be the generalized matrix inverse.

Proposition A.1. M′
W(MWΣMW

′)†MW is invariant to the choice of W.

Proof. Begin by showing col(M) = col(G). From the rank-nullity theorem, it suffices to show
that null(M′) = null(G′). Define projection matrix PW = G(G′WG)−1G′W and consider
x such that P′

Wx = 0. Since G′WG is invertible,

WG(G′WG)−1G′x = 0 =⇒ G′x = 0.

Now consider x such that G′x = 0. Then P′
Wx = 0. Hence, null(MW

′) = null(G′) and
col(MW) = col(G).

Since col(MW) is invariant to the choice of weight matrix, Theorem 4.8 of Rao and Mitra
(1972) implies M′

W(MWΣMW
′)†MW is invariant to W.

Lemma A.1. Σ−1M is a reflexive g-inverse of MΣM′.

Proof. MΣ = Σ−G(G′Σ−1G)−1G′ = MΣM′. Then, from idempotency of M, the g-inverse
and reflexive properties hold

(MΣM′)Σ−1M(MΣM′) = MΣ

(Σ−1M)(MΣM′)(Σ−1M) = (Σ−1M).

Proposition A.2. For duplication matrix D, let H and Λ be matrices such that

X ∼ N(−1
2MWHD′Dvech(Λ), MWΣMW

′)

Then, D′D(MWH)′(MWΣMW
′)†X is identical in distribution to D′DH′Σ−1X ∼ N(−1

2Ωvec(Λ),Ω)
where Ω = (D′D)H′Σ−1MH(D′D).
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Proof. Let ΩW = (D′D)(MWH)′(MWΣMW
′)†(MWH)(D′D). Then

(D′D)(MWH)′(MWΣMW
′)†X ∼ N(−1

2ΩWvec(Λ),ΩW).
Proposition A.1 implies MW

′(MWΣMW
′)†MW is invariant to the choice of W, so ΩW

is also invariant to W.
Without loss of generality, set W = Σ−1. Lemma A.1 shows that Σ−1M is a reflexive

g-inverse of MWΣMW
′. Then

(D′D)(MH)′Σ−1X ∼ N(−1
2(D′D)(MH)′Σ−1MH(D′D)vech(Λ), (D′D)(MH)′Σ−1MH(D′D)).

(16)

Also,

(D′D)H′Σ−1X ∼ N(−1
2(D′D)H′Σ−1MH(D′D)vech(Λ), (D′D)H′Σ−1MH(D′D)). (17)

The distributions of Equations 16 and 17 are identical since Σ−1M = M′Σ−1M.

A.2 Framework and results for local parameter heterogeneity

Assumption A.1 (GMM conditions).

(i) WE[g(x, y0,θ)] = 0 only if θ = θ∗.

(ii) θi ∈ interior(Θ) for Θ compact.

(iii) E[supθ∈Θ ∥g(x, y0,θ)∥] < ∞.

(iv) E[g(x, y0;θ∗)] = 0 and E[∥g(x, y0;θ∗)∥2] < ∞ finite.

(v) E[supθ∈N ∥ ∂
∂θ′ g(x, y0,θ)∥] < ∞.

(vi) G′WG non-singular.

(vii) E[supθ∈N ∥g(x, y0;θ)∥2] < ∞.

(viii) For r ∈ {1, . . . , m}, E[supθ∈N ∥ ∂
∂θ∂θ′ gr(x, y0;θ)∥] < ∞.

Assumption A.2 (Regularity conditions). Let N be a neighborhood of θ∗.

i) For r ∈ {1, . . . , m}, E[supθ∈Θ ∥∂gr(x,f(x,ε;θ);θ)
∂θ′ ∥] and E[supθ∈Θ ∥∂2gr(x,f(x,ε;θ);θ)

∂θ∂θ′ ∥] are
bounded.

ii) E[∥ ∂2

∂τ∂τ ′ gr(xi, f(x, ε; τ );θ∗)∥2] |τ=θ∗ is bounded.
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iii) E[supθ∈Θ ∥ ∂
∂τ ′ g(xi, f(x, ε; τ );θ)∥2] |τ=θ∗ and E[supθ∈N ∥ ∂

∂τ ′ g(xi, f(x, ε; τ );θ)∥4] |τ=θ∗

are bounded.

iv) E[supθ∈N ∥ ∂
∂τ ′

(
∂gr(x,f(x,ε;τ );θ)

∂θ

)
∥2] |τ=θ∗ is bounded.

v) E[supθ∈N ∥ ∂
∂τ ′

(
∂gr(x,f(x,ε;τ );θ)

∂θ

)
gr′(x, y0;θ)∥2] |τ=θ∗ is bounded for r, r′ ∈ {1, . . . , m}.

vi) E[supθ∈N ∥ ∂3

∂θj∂θj′ ∂τ ′ gr(x, f(x, ε; τ );θ)∥2] |τ=θ∗ is bounded.

Proof of Lemma 3.1

Proof. Throughout, Assumption 3.2 allows for differentiability of the moment function and
generating model. Let the r’th moment condition be gr(x, y;θ). Then, consider the moment’s
Taylor expansion about θ∗:

√
n

n

n∑
i=1

gr(xi, yi;θ∗) =
√

n

n

n∑
i=1

gr(xi, f(xi, εi;θ∗);θ∗)

+ ∂

∂θ′

[
gr(xi, f(xi, εi;θ∗);θ∗)

]
Uisn−1/4

+ 1
2s′U′

i

∂2

∂τ∂τ ′

[
gr(xi, f(xi, εi; τ );θ∗)

]
Uisn−1/2|

τ=θ̃
.

Using Assumption 3.2, the second order term follows from a second order mean value theorem
expansion where θ̃ is on the line segment connecting θ∗ and θ∗ + Uisn−1/4.

Note that

1
2n

n∑
i=1

(
s′U′

i

∂2

∂τ∂τ ′

[
gr(xi, f(xi, εi; τ );θ∗)

]
Uis − E[s′U′

i

∂2

∂τ0∂τ ′
0

[
gr(xi, f(xi, εi; τ0);θ∗)

]
Uis]

)
|
τ=θ̃,τ0=θ∗

= 1
2n

n∑
i=1

(
s′U′

i

∂2

∂τ∂τ ′

[
gr(xi, f(xi, εi; τ );θ∗)

]
Uis − E[s′U′

i

∂2

∂τ∂τ ′

[
gr(xi, f(xi, εi; τ );θ∗)

]
Uis]

)
+

(
E[s′U′

i

∂2

∂τ∂τ ′

[
gr(xi, f(xi, εi; τ );θ∗)

]
Uis] − E[s′U′

i

∂2

∂τ0∂τ ′
0

[
gr(xi, f(xi, εi; τ0);θ∗)

]
Uis]

)
|
τ=θ̃,τ0=θ∗

p−→ 0.

The first parenthetical term of the above display is op(1) from Chebyshev’s inequality,
Condition (ii) of Assumption A.1, and Condition ii) of Assumption A.2. Then, the above
display can be written as

√
n

n

n∑
i=1

gr(xi, yi;θ∗) =
√

n

n

n∑
i=1

gr(xi, f(xi, εi;θ∗);θ∗)

+ 1
2E

[
s′U′

i

∂2

∂τ∂τ ′

[
gr(xi, f(xi, εi; τ );θ∗)

]
Uis|τ=θ∗

]
+ op(1).
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The second term of the above display simplifies to

1
2E

[
s′U′

i

∂2

∂τ∂τ ′

[
gr(xi, f(xi, εi; τ );θ∗)

]
Uis|τ=θ∗

]
= −1

2trace
(
E

[
∂2gr(xi, f(xi, εi;θ∗))

∂θ∂θ′

]
Λ

)

= −1
2vec

(
E

[
∂2gr(xi, f(xi, εi;θ∗))

∂θ∂θ′

])′
vec(Λ)

The first equality follows from the cyclicality of the trace operator, independence of ui from
(x′

i, ε
′
i)′, and applying Lemma A.2. The desired result follows from stacking moment function

gr(Zi,θ
∗).

Lemma A.2. Impose Assumptions 3.2, A.1, and A.2. Then,

i) E
[

∂gr(xi,f(xi,εi;θ∗);θ∗)
∂y′

∂f(xi,εi;θ∗)
∂θ

]
= −E

[
∂gr(xi,f(xi,εi;θ∗);τ )

∂τ

]
|τ=θ∗.

ii) E
[(

∂f(xi,εi;θ∗)
∂θ′

)′
∂2gr(xi,f(xi,εi;θ∗);θ∗)

∂y∂y′
∂f(xi,εi;θ∗)

∂θ′ + ∂
∂τ

[
∂gr(xi,f(xi,εi;θ∗);θ∗)

∂y′
f(xi,εi;τ )

∂τ

]]
= −E

[
∂2gr(xi,f(xi,εi;θ∗);τ )

∂τ∂τ ′

]
|τ=θ∗,τ=θ∗.

Proof. For the result in the first display, consider the moment condition E[gr(f(εi,θ
∗),θ∗)] = 0.

Computing the total derivative with respect to θ and evaluating at θ = θ∗, Condition i) of
Assumption A.2, Assumption 3.2, and the multivariate chain rule imply

0 = E
[
∂gr(xi, f(xi, εi;θ∗);θ∗)

∂y′
∂f(xi, εi;θ∗)

∂θ
+ ∂gr(f(xi, εi;θ∗); τ )

∂τ

]
|τ=θ∗ .

The result in the second display follows analogously. Note that the terms corresponding to
the cross partial derivative of the moment function gr with respect to y and θ equal zero
from Condition ii) of Assumption 3.2.

Proposition A.3. Impose Assumptions 3.1, 3.2, A.1, and A.2. Then θ̂ p−→ θ∗.

Proof. Let g0(θ) = E[g(x, y0,θ)] and Q0(θ) = −g0(θ)Wg0(θ). Throughout, Assumption 3.2
allows for differentiability of the moment function and generating model.

From the mean-value theorem, there exists θ̃ on the line segment between θ∗ and
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θ∗ + Uisn−1/4 such that

sup
θ∈Θ

∥ 1
n

n∑
i=1

g(x, y;θ) − E[g(x, y0;θ)]∥

= sup
θ∈Θ

∥ 1
n

n∑
i=1

g(x, y0;θ) + ∂

∂τ ′ g(x, f(xi, εi; τ );θ)Uisn−1/4 − E[g(x, y0;θ)]∥ |
τ=θ̃

≤ sup
θ∈Θ

∥ 1
n

n∑
i=1

g(x, y0;θ) − E[g(x, y0;θ)]∥

+ sup
θ∈Θ

∥ 1
n

n∑
i=1

∂

∂τ ′ g(x, f(xi, εi; τ );θ)Uisn−1/4 − E[ ∂

∂τ ′ g(x, f(xi, εi; τ );θ)Uisn−1/4]∥

+ sup
θ∈Θ

∥E[ ∂

∂τ ′ g(x, f(xi, εi; τ );θ)Uisn−1/4]∥ |
τ=θ̃

The first term of the above display is op(1) from Condition of (iii) of Assumption A.1. The
second and third terms of the above display are op(1) from Chebyshev’s inequality, Condition
(ii) of Assumption A.1, and Condition iii) of Assumption A.2. Hence the above display is
op(1).

Since Θ is compact, the desired result follows from applying the arguments of Theorem
2.6 of Newey and McFadden (1994) with g0(θ) defined in the beginning of this proof.

Proof of Proposition 3.1

Proof. Let Ĝ(θ) = 1
n

∑n
i=1 g(xi, yi;θ). Throughout, Assumption 3.2 allows for differentiability

of the moment function and generating model.
From the mean value theorem and the first order condition (applying Conditions (vi),

(ii)of Assumption A.1 and Assumption 3.2), there exists θ between θ∗ and θ̂ such that

√
n(θ̂ − θ∗) = −[Ĝ(θ̂)′ŴĜ(θ)]−1Ĝ(θ̂)

√
n

n

n∑
i=1

g(xi, yi,θ
∗).

Consider the r’th moment function. From a mean value theorem expansion, there exists
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θ̃ on the line segment between θ∗ and θ∗ + Uisn−1/4 such that

sup
θ∈N

∥ 1
n

n∑
i=1

∂gr(xi, yi;θ)
∂θ

− E[∂gr(x, y0;θ)
∂θ

]∥ =

sup
θ∈N

∥ 1
n

n∑
i=1

∂gr(xi, y0
i ;θ)

∂θ
+ ∂

∂τ ′

(
∂gr(xi, f(xi, εi; τ );θ)

∂θ

)
Uisn−1/4 − E[∂gr(x, y0;θ)

∂θ
]∥ |

τ=θ̃

≤ sup
θ∈N

∥ 1
n

n∑
i=1

∂gr(xi, y0
i ;θ)

∂θ′ − E[∂gr(x, y0;θ)
∂θ

]∥

+ sup
θ∈N

∥ ∂

∂τ ′

(
∂gr(xi, f(xi, εi; τ );θ)

∂θ

)
Uisn−1/4 − E[ ∂

∂τ ′

(
∂gr(xi, f(xi, εi; τ );θ)

∂θ

)
Uisn−1/4]∥

+ sup
θ∈N

∥E[ ∂

∂τ ′

(
∂gr(xi, f(xi, εi; τ );θ)

∂θ

)
Uisn−1/4]∥ |

τ=θ̃
.

The first term after the inequality is op(1) from Condition (v) of Assumption A.1. The
second and third terms after the inequality are op(1) from Condition iv) of Assumption
A.2, Chebyshev’s inequality, and Condition (ii) of Assumption A.1. Then Ĝ(θ̂) p−→ G and
Ĝ(θ) p−→ G.

The desired result follows from combining with Lemma 3.1,

√
n(θ̂ − θ∗) = −(G′WG)−1G′W

√
n

n

n∑
i=1

g(xi, yi,θ
∗) + op(1)

= −(G′WG)−1G′W
√

n

n

[ n∑
i=1

g(xi, f(xi, εi;θ∗))
]

+ 1
2(G′WG)−1G′WH(D′D)vech(Λ) + op(1).

Proof of Proposition 3.2

Proof. Throughout, Assumption 3.2 allows for differentiability of the moment function and
generating model. A mean value theorem expansion about θ̂ implies there exists θ̃ on the
line segment between θ∗ and θ̂ such that

√
n

n

n∑
i=1

g(xi, yi; θ̂) =
√

n

n

n∑
i=1

g(xi, yi,θ
∗) + ∂

∂τ ′ g(xi, yi; τ )(θ̂0 − θ∗) |
τ=θ̃

=
(√

n

n

n∑
i=1

Mg(xi, f(xi, εi;θ∗),θ∗)
)

− 1
2MH(D′D)vech(Λ).

The second line follows from Proposition 3.1. ∑n
i=1

∂
∂τ ′ g(xi, yi; τ ) p−→ G from Condition iv) of

Assumption A.2, Chebyshev’s inequality, and Condition (ii) of Assumption A.1.
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Lemma A.3. Impose Assumptions 3.1, 3.2, A.1, and A.2. Then,

i) Ĥ p−→ H.

ii) Σ̂
p−→ Σ.

Proof. Proposition A.3 implies θ̂ p−→ θ, so it suffices to show uniform convergence over a
neighborhood N of θ∗. Throughout, Assumption 3.2 allows for differentiability of the moment
function and generating model.

For i), let j, j′ ∈ {1, . . . , p}. A mean value theorem decomposition implies

sup
θ∈N

∥ 1
n

n∑
i=1

∂2

∂θj∂θj′
gr(xi, yi;θ) − E[ ∂2

∂θj∂θj′
gr(x, y0;θ)]∥

≤ sup
θ∈N

∥ 1
n

n∑
i=1

∂2

∂θj∂θj′
gr(xi, y0

i ;θ) − E[ ∂2

∂θj∂θj′
gr(x, y0;θ)]∥

+ sup
θ∈N

∥ 1
n

n∑
i=1

∂3

∂θj∂θj′∂τ ′ gr(xi, f(xi, εi, τ );θ)Uisn−1/4∥ |
τ=θ̃

The first line after the inequality is op(1) from Condition (viii) of Assumption A.1. The
second term after the inequality is op(1) from Condition vi) of Assumption A.2, Chebyshev’s
inequality, and Condition (ii) of Assumption A.1.

For ii), a mean value theorem decomposition implies

sup
θ∈N

∥ 1
n

n∑
i=1

g(xi, yi;θ)g(xi, yi;θ)′ − E[g(x, y0;θ)g(x, y0;θ)′]∥

≤ sup
θ∈N

∥ 1
n

n∑
i=1

g(xi, y0
i ;θ)g(xi, y0

i ;θ)′ − E[g(x, y0;θ)g(x, y0;θ)′]∥

+ sup
θ∈N

∥ 1
n

n∑
i=1

(
∂

∂τ ′ g(xi, f(xi, εi; τ );θ)Uisn−1/4
)(

∂

∂τ ′ g(xi, f(xi, εi; τ );θ)Uisn−1/4
)′

∥

+ 2 sup
θ∈N

∥ 1
n

n∑
i=1

g(xi, y0;θ)
(

∂

∂τ ′ g(xi, f(xi, εi; τ );θ)Uisn−1/4
)′

∥

The first term after the inequality is op(1) from Condition (vii) of Assumption A.1. The second
term after the inequality is op(1) from Chebyshev’s inequality, Condition (ii) of Assumption
A.1, and Condition iii) of Assumption A.2. Analogously, the third term after the inequality
is op(1) from Chebyshev’s inequality, Condition (ii) of Assumption A.1, and Conditions iv)
and v) of Assumption A.2.
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A.3 Semiparametric

Assumption A.3 (Smoothness, semiparametric). For all θ ∈ Θ, pxy(x, y;θ) is two times
continuously differentiable in θ with probability 1.

Assumption A.4 (Dominance).

i) For any x, y in the support, ∂
∂t

{pxy,t(x, y;θt +Uσt)pu,t(u)} is dominated by an integrable
function.

ii) For all θ ∈ Θ, ∂
∂t

g(x, y;θ)pxy,t(x, y;θ) is dominated by an integrable function.

iii) For all θ ∈ Θ, ∂
∂θ′

[
g(x, y;θ)p(x, y;θ)

]
is dominated by an integrable function.

iv) For all θ ∈ Θ, gr(x, y;θ∗) ∂2

∂θ∂θ′ p(x, y;θ) is dominated by an integrable function.

Definition A.1. Let µ be an arbitrary measure relative to which Pθt,σt,vech(C),pxy,t,pu,t and
Pθ∗,σ∗,vech(C),pxy ,pu possess densities pθt,σt,vech(C),pxy,t,pu,t and pθ∗,σ∗,vech(C),pxy ,pu respectively.
Suppose the map t 7→ Pθt,σt,vech(C),pxy,t,pu,t from a non-negative neighborhood of 0 ∈ [0, ∞) to
P satisfies

∫ [√
pθt,σt,vech(C),pxy,t,pu,t − √

pθ∗,σ∗,vech(C),pxy ,pu

t
− 1

2(a′ℓ̇+ η)√p0

]2

dµ → 0,

for for ℓ̇(x, y) =
 ∂

∂θ
p(x, y;θ∗)

1
2(D′D)vech( ∂2

∂θ∂θ′ p(x, y;θ∗))

, a = (c′, vech(Λ)′)′, and measurable func-

tion η(x, y) = ∂ log pt(x, y;θ∗)/∂t. Then the parametric submodel Pθt,σt,vech(C),pxy,t,pu,t is
differentiable in quadratic mean at t = 0.

Proof of Lemma 4.1

Proof. Compute the one-sided partial derivative of log qt(x, y) about t = 0 as t ↓ 0.

∂+

∂t
log qt(x, y) |t=0 = 1

qt(x, y)

∫ ∂+

∂θ′ pxy,t(x, y;θt + Uσt)cpu,t(u)du

+ 1
2qt(x, y)

∫ ∂+

∂θ′ pxy,t(x, y;θt + Uσt)Ust−1/2pu,t(u)du + η |t=0

= c′ 1
pxy(x, y;θ∗)

∂

∂θ
pxy(x, y;θ∗) + 1

2vec
(

∂2pxy(x, y;θ∗)
∂θ∂θ′

)′
vec(Λ) + η

= c′ 1
pxy(x, y;θ∗)

∂

∂θ
pxy(x, y;θ∗) + 1

2vech(Λ)′(D′D)vech
(

∂2pxy(x, y;θ∗)
∂θ∂θ′

)
+ η.
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The first equality follows from Condition i) of Assumption A.4. The second equality follows
from applying L’Hôpital’s rule to the second term. Note that the score of the density of u is
zero since

∫ ∂
∂t

pu,t(u)du = 0.

Lemma A.4. Impose Assumptions A.4 and suppose Pθt,σt,vech(C),pxy,t,pu,t is differentiable in
quadratic mean at t = 0. The nuisance tangent space Ṗ consists of all measurable mean-zero
random functions η(x, y) with finite variance such that

0m×1 =
∫∫

g(x, y;θ∗)η(x, y)pxy(x, y;θ∗)dxdy.

Proof. Let θ = θ∗. The moment condition implies that pxy,t(x, y) is subject to the restriction

0m×1 =
∫∫

g(x, y;θ∗)pxy,t(x, y;θ∗)dxdy.

From Condition ii) of Assumption A.4, the partial derivative of the above display with
respect to t implies that the score function for the nuisance parameter pxy (noted as η(x, y))
must satisfy

0m×1 =
∫∫

g(x, y;θ∗)η(x, y)pxy(x, y;θ∗)dxdy.

Therefore any member of the nuisance tangent space is necessarily a member of the conjectured
tangent space.

Now instead suppose function η(x, y) is a bounded element of the conjectured tangent
space. Consider a parametric submodel with density

pxy,t(x, y;θ∗) = (1 + tη(x, y))pxy(x, y;θ∗)

for t sufficiently small so that (1 + tη(x, y)) is non-negative. The density is proper since
η(x, y) is mean zero. The density is compatible with the moment restrictions since

∫∫
g(x, y;θ∗)pxy,t(x, y;θ∗)dxdy = t

∫∫
g(x, y;θ∗)η(x, y)pxy(x, y;θ∗)dxdy = 0m×1.

Moreover, the score vector for this parametric submodel is ∂
∂t

pxy,t(x, y;θ∗) |t=0= η(x, y).
Thus η(x, y) is a member of the nuisance tangent space, and the result follows since any
element of the Hilbert space can be approximated by a sequence of bounded functions.
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Lemma A.5. Impose Assumptions A.4 and A.1. Suppose Pθt,σt,vech(C),pxy,t,pu,t is differentiable
in quadratic mean at t = 0. The orthogonal complement of the nuisance tangent space is

Ṗ⊥ =
{
A ∈ R1×m : Ag(x, y;θ∗)

}
.

For any h ∈ H for Hilbert space H, the projection onto Ṗ satisfies

h − Π(h|Ṗ) = (18)∫∫
hg(x, y;θ∗)′pxy(x, y;θ∗)dxdy

[ ∫∫
g(x, y;θ∗)g(x, y;θ∗)′pxy(x, y;θ∗)dxdy

]−1
g(x, y;θ∗).

(19)

Proof. Take element η(x, y) ∈ Ṗ and element Ag(x, y;θ∗) for matrix A. Then,
∫∫

Ag(x, y;θ∗)η(x, y)pxy(x, y;θ∗)dxdy = A
∫∫

g(x, y;θ∗)η(x, y)pxy(x, y;θ∗)dxdy = 0

so the proposed space is orthogonal to Ṗ.
Next, let h be a measurable function that is mean zero and with finite variance. From

the Hilbert projection theorem, there exists A such that h − Ag(x, y;θ∗) ∈ Ṗ. Equivalently,∫∫
[h − Ag(x, y;θ∗)]g(x, y;θ∗)′pxy(x, y;θ∗)dxdy = 0. Condition (vii) of Assumption A.1

implies
∫∫

g(x, y;θ∗)g(x, y;θ∗)′pxy(x, y;θ∗)dxdy is invertible. Rearranging gives Equation
19.

Lemma A.6. Impose Assumptions 3.2, 3.3, A.4, A.1, and A.2. Suppose Pθt,σt,vech(C),pxy,t,pu,t

is differentiable in quadratic mean at t = 0. The efficient information matrix for vech(Λ) is
Ĩ = (D′D)H′Σ−1MH(D′D)/4. The efficient influence function for vech(Λ) is

ψ̃(x, y) = −1
2 Ĩ−1(D′D)H′Σ−1Mg(x, y,θ∗).

Proof. Begin with computing
∫∫
ℓ̇(x, y)g(x, y)′pxy(x, y;θ∗)dxdy. The moment condition and

Condition iii) of Assumption A.4 implies

0m×p =
∫ ∂

∂θ′ g(x, y;θ∗)pxy(x, y;θ∗)dxdy +
∫

g(x, y;θ∗)∂pxy(x, y;θ∗)
∂θ′ dxdy

−G =
∫

g(x, y;θ∗)∂pxy(x, y;θ∗)
∂θ′ dxdy.
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Next fix u = 1p×1 so U = Ip. Then, Condition iv) of Assumption A.4 implies

∂2

∂σ∂σ′

∫∫
gr(x, y;θ∗)pxy(x, y;θ∗ + σ)dxdy |σ=0=

∫∫
gr(x, y;θ∗) ∂2

∂θ∂θ′

[
pxy(x, y;θ∗)

]
dxdy.

Equation 2 and Condition ii) of Assumption A.2 implies that the integral can equivalently
be expressed as

∂2

∂σ∂σ′

∫∫
gr(x, f(x, ε;θ∗ + σ);θ∗)pxε(x, ε)dεdx |σ=0

=
∫∫ (f(x, ε;θ∗ + σ)

∂θ′

)′ ∂2gr(x, f(x, ε;θ∗ + σ);θ∗)
∂y∂y′

(f(x, ε;θ∗ + σ)
∂θ′

)
pxε(x, ε)dεdx

+
∫∫ ∂

∂τ

[
∂gr(x, f(x, ε;θ∗ + σ);θ∗)

∂y′

(f(x, ε;θ∗ + τ )
∂θ′

)]
pxε(x, ε)dεdx |σ=0,τ=0

= −
∫∫ ∂2gr(x, f(x, ε;θ∗); τ )

∂τ∂τ ′ pxε(x, ε)dxdε |τ=θ∗ .

The final line follows from Lemma A.2. Then, stacking moment conditions,

−H(D′D)
2 = 1

2

∫∫
g(x, y;θ∗) 1

pxy(x, y)vech
(

∂2pxy(x, y;θ∗)
∂θ∂θ′

)
(D′D)pxy(x, y)dxdy.

Thus
∫∫
ℓ̇(x, y)g(x, y;θ∗)′pxy(x, y;θ∗)dxdy =

 −G′

−1
2(D′D)H′

 .

Next, verify the guess for the conjectured influence function for vech(Λ):
∫∫
ψ̃(x, y)(a′ℓ̇(x, y) + η(x, y))pxy(x, y;θ∗)dxdy

= −1
2 Ĩ−1(D′D)H′Σ−1M

[ ∫∫
g(x, y;θ∗)ℓ̇(x, y)′pxy(x, y;θ∗)dxdy

]
a

= 1
2 Ĩ(D′D)H′Σ−1 MG︸ ︷︷ ︸

=0

c + 1
4 Ĩ−1(D′D)(MH)′Σ−1H(D′D)vech(Λ) = vech(Λ).

The efficient information matrix and score function for vech(Λ) immediately follow.

Proof of Theorem 4.1

Proof. These proofs closely follow and generalize the arguments of Chapter 25.6 of van der
Vaart (1998) to multivariate testing and are applicable to the score functions that arise in
my specific settings.
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Let (c′,λ′)′ℓ̇+ η be an element of the tangent set. Then, the functional of interest is

ψ(Pt,(c′,λ′)′ℓ̇+η) = tE[ψ̃((c′,λ′)′ℓ̇+ η)] + o(t) = tλ+ o(t)

where the second equality follows from the form of the efficient influence function (see
Lemma A.6). The existence of the efficient influence function implies that the functional ψ
is differentiable at P relative to the tangent space. For what follows, I consider paths of the
form t = h/

√
n.

1. Beginning with the first part of the theorem, I generalize Theorem 25.44 of van der Vaart
(1998) to multivariate testing and follow the argument closely. Fix h1 and arbitrary
(c′

1,λ
′
1)′ℓ̇+ η1. Assume that E[(c′

1,λ
′
1)′ℓ̇+ η1)2] = 1 to ease notation.

Define the orthonormal base G = ((c′
1,λ

′
1)′ℓ̇+ η1, . . . , (c′

k,λ′
k)′ℓ̇+ ηk)′ of an arbitrary

finite-dimensional subspace of the tangent space. Note that the first element of the
orthonormal base is (c′

1,λ
′
1)′ℓ̇+ η1. Lemma 25.14 of van der Vaart (1998) implies that

for any (c′,λ′)′ℓ̇+ η ∈ linG, Pt,(c′,λ′)′ℓ̇+η is locally asymptotically normal at t = 0. Let
Sk−1 be the unit sphere of Rk. In the sense of the convergence of experiments,

(P n
h/

√
n,b′G : h > 0, b ∈ Sk−1)⇝ (Nm(hb, I) : h > 0, b ∈ Sk−1, vech−1((λ1, . . . ,λk)b) ∈ C).

The last restriction restricts b so that b′G lies within the tangent set. For score function
(c′

1,λ
′
1)′ℓ̇+ η1 and h = h1, fix a subsequence for which

lim supn→∞ πn(Ph1n−1/2,(c′
1,λ′

1)′ℓ̇+η1
) is taken. For each (h, b), contiguity implies that

there exists another subsequence along which the functions πn(Ph/
√

n, b) converges
pointwise to a limit π(h, b). Theorem 15.1 of van der Vaart (1998) implies that
the function π(h, b) is the power function of a test in the normal limit experiment
Zk ∼ N(E[ψ̃G′]b,E[ψ̃G′]E[Gψ̃]). By choosing a sufficiently large base, the covariance
of the limit experiment is arbitrarily close to E[ψ̃ψ̃′]. Now choose (h, b) = (1, e1),
denoting π(λ1) as the power function in the normal limit experiment

Z ∼ N(λ1, 4Ω−1) (20)

where E[ψ̃ψ̃′] = 4Ω−1 from Lemma A.6. π(λ1) is level-α since πn is level α in the local
experiment for each n. Now fix local parameter c and η ∈ Ṗ. Since π∗(λ; r) is the
power function for the level-α test that maximizes a weighted average power criterion
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with weight function wr(λ)
∫

π(λ)wr(λ)dλ ≤
∫

π∗(λ; r)wr(λ)dλ.

Since lim supn→∞ πn(Ph/
√

n,(c′,λ′)′ℓ̇+η) ≤ π(λ), the desired result follows taking r → ∞.

2. For the second part of the theorem, define Zn = −2Ω̂−1Sn/
√

n. Lemma 25.23 of
van der Vaart (1998) implies Tn is regular at P . Like Lemma 25.45 of van der
Vaart (1998), by the efficiency of Tn and differentiability of ψ,

√
nTn converges

under P1/
√

n,(c′,λ′)′ℓ̇+η to N(λ,E[ψ̃ψ̃′]), which matches the limit experiment. Since

Z′
n(Ω̂/4)Zn − infvech−1(λ)∈C

[
Zn − λ

]′
(Ω̂/4)

[
Zn − λ

]
= S′

nΩ̂
−1Sn − infvech−1(λ)∈C

[
Sn +

1
2Ω̂λ

]′
Ω̂−1

[
Sn + 1

2Ω̂λ
]
, the likelihood ratio test of Sn matches the corresponding

likelihood ratio test of the limit experiment.

Now, I will show that the likelihood ratio test is equivalent to a test that maximizes
weighted average power for distant alternatives. Observe that the multivariate Gaussian
shift experiment of Equation 20 for arbitrary λ can be rescaled and written as a
Gaussian linear regression model. The dependent variable is Z = 1

2Ω
1/2′Z, independent

variable is 1
2Ω

1/2′, coefficients λ, and errors are standard normal

Z = 1
2Ω

1/2′λ+ η, η ∼ N(0 p(p+1)
2 ×1, I p(p+1)

2 × p(p+1)
2

).

Since the alternative hypothesis parameter space is positively homogeneous (that Λ ∈ C

implies aΛ ∈ C for positive scalar a), Theorem 1 of Andrews (1996) applies. A test
based on the weighted average power criterion for radius r > 0 is equivalent to finding
the best test that distinguishes between the following simple null and simple alternative
hypotheses

H0: fz(Z|0) versus H1:
∫

fz(Z|λ)wr(λ)dλ.

Let LRr be the corresponding likelihood ratio test statistic under a weighted average
power criterion with radius r. Then (up to normalization) Andrews (1996) shows that
the limr→∞ LRr is equivalent to the generalized likelihood ratio test statistic for Z (and
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consequently for Z)

LR = Z′Z − inf
vech−1(λ)∈C

(Z − Ω1/2′λ)′(Z − Ω1/2′λ))

= Z′(Ω/4)Z − inf
vech−1(λ)

[
Z − λ

]′
(Ω/4)

[
Z − λ

]
.

Corollary A.1. Impose Assumptions 3.2, 3.3, A.4, A.1, and A.2. Suppose Pθt,σt,vech(C),pxy,t,pu,t

is differentiable in quadratic mean at t = 0 and that θ is a scalar.

a) For every sequence of power functions P 7→ πn(P ) of level-α tests of Equation 10 for
Λ > 0,

lim sup
n→∞

πn(PΛ,n−1/2) ≤ 1 − Φ
z1−α − Λ√

Ĩ−1

 .

b) Suppose ϕhet
n = 1 when the level α one-dimensional heterogeneity test rejects and 0

otherwise. Then,

lim
n→∞

PΛ,n−1/2(ϕn = 1) = 1 − Φ
z1−α − Λ√

Ĩ−1

 . (21)

Proof. Part (i) follows from applying Lemma 25.44 of van der Vaart (1998), noting that the
scalar limit experiment is z ∼ N(Λ, Ĩ−1). Part (ii) follows from applying Theorem 4.1 to the
scalar case.

B Additional empirical results

B.1 Production function estimation
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