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This online appendix contains supplemental material on: the comparison of LP and VAR
estimation results in prior empirical work (Supplemental Appendix A); implementation de-
tails for the LP and VAR estimators that we consider in our simulations (Supplemental Ap-
pendix B); a detailed description of our simulation study set-up (Supplemental Appendix C);
further simulation results (Supplemental Appendix D); theoretical and simulation-based dis-
cussion of the probability of the event that the VAR point estimate falls outside of the LP
confidence interval (Supplemental Appendix E).

Appendix A VARs vs. LPs in empirical work

We describe how we construct the point estimate and standard error comparison of LPs and
VARs in existing applied work in Figure 3.1. Our implementation closely follows our earlier
work in Montiel Olea, Plagborg-Møller, Qian, and Wolf (2024, Online Appendix C), which
in turn is based on the literature summary in Ramey (2016).

We consider four applications in which the researcher has access to a direct measure of a
structural shock: to monetary policy, taxes, government spending, and technology. She then
estimates the dynamic causal effects of these macroeconomic shocks using either LP or the
equivalent (internal-instrument) recursive VAR. The choice of shocks, outcomes, controls,
and lags is exactly the same as in our earlier work, as is the computation of standard errors.
Overall we obtain LP and VAR impulse response point estimates and standard errors for 385
impulse responses, across all shocks, outcome variables, and horizons. For each we compute
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standard error ratios and point estimate differences, scaled by the VAR standard error. We
finally split the impulse responses into short horizons (≤ one year, 84 observations overall)
and long horizons (> one year, 301 observations overall), and report our results for standard
error ratios and scaled point estimate differences as boxplots.

Appendix B Estimation method details

We provide implementation details for the LP and VAR estimator variants that we consider
in our simulations in Sections 5.2 and 6.4.

B.1 LPs

Recall from Section 2 that the LP estimator of the horizon-h impulse response is the coeffi-
cient β̂h in the h-step-ahead regression

yt+h = µ̂h + θ̂LP
h xt + γ̂′

hrt +
p∑

ℓ=1
δ̂′

h,ℓwt−ℓ + ξ̂h,t. (B.1)

For our different structural identification schemes, the outcome, impulse, and control vari-
ables are selected as follows:

1. Observed shock. xt is the observed shock ε1,t, there are no contemporaneous controls rt,
and the outcome variable yt is selected at random from the observed data series. The
lagged controls are either the shock plus the full five-dimensional vector of observables,
or only the shock plus the outcome of interest.

2. Recursive identification. xt is the policy variable (i.e., either the federal funds rate or
government purchases), rt contains all the variables ordered before xt in the structural
shock identification scheme, and wt always contains the full vector of observables,
consistent with the invertibility assumption.

We consider the bias-corrected version of the LP estimator. We follow Herbst and Jo-
hannsen (2024) for the bias correction, using their approximate analytical bias formula for
LPs with controls.B.1 The lag length p is either set exogenously (in our simulations typically

B.1We substitute population autocovariances with sample analogues. We implement an iterative bias cor-
rection described in Equation 11 of Herbst and Johannsen (2024), with the impulse response estimate at
horizon h bias-corrected using the previously corrected impulse response estimates at horizons 1, 2, . . . , h−1.
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to p = 4) or selected using the Akaike Information Criterion (AIC) applied to a reduced-form
VAR in the observed variables. We use Eicker-Huber-White standard errors, and a modifica-
tion of the bootstrap routine for lag-augmented local projections suggested in Montiel Olea
and Plagborg-Møller (2021). An important difference is that instead of using the wild autore-
gressive bootstrap design, we use the autoregressive residual block bootstrap of Brüggemann,
Jentsch, and Trenkler (2016). As implied by the results of Brüggemann, Jentsch, and Tren-
kler (2016), this is important in order to conduct inference on structural impulse responses
(rather than reduced-form impulse responses). A description of the algorithm is as follows:

1. Compute the LP-based structural impulse response estimate of interest and its stan-
dard error.

2. Estimate the VAR(p) model by OLS. Compute the corresponding VAR residuals ût.
Bias-adjust the VAR coefficients using the formula in Pope (1990).

3. Compute the structural impulse response of interest implied by the VAR model.

4. For each bootstrap iteration b = 1, . . . , B:

i) Generate properly centered bootstrap residuals û∗
t using steps 2 and 3 of the

residual-based moving block bootstrap scheme in Brüggemann, Jentsch, and Tren-
kler (2016), as described on p. 73 of their paper (see their Section 4). The block
size is chosen using the rule described on p. 2665 of Jentsch and Lunsford (2019).B.2

ii) Draw a block of p initial observations (y∗
1, . . . , y∗

p) uniformly at random from the
T − p + 1 blocks of p observations in the original data.

iii) Generate bootstrap data y∗
t , t = p + 1, . . . , T , by iterating on the bias-corrected

VAR(p) model estimated in step 2, using the innovations û∗
t .

iv) Apply the LP estimator to the bootstrap data {y∗
t } and compute its Eicker-Huber-

White standard error.

v) Store the t-statistic for the LP estimate, making sure that the statistic is centered
around the VAR-implied structural impulse response from step 3. As explained
by Montiel Olea and Plagborg-Møller (2021), it is critical that the bootstrap t-
statistic is centered at the VAR-implied impulse response (see step 4(v) on p. 1808
of that paper), not the LP estimate from step 1.

B.2The rule gives a block size of 20 for our sample size of T = 240.
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5. Compute the a/2 and 1 − a/2 quantiles of the B draws of the t-statistic, b = 1, . . . , B.

6. Return the percentile-t bootstrap confidence interval (e.g., Montiel Olea and Plagborg-
Møller, 2021, step 6, p. 1808).

We also consider a shrinkage variant of LP, the penalized LP of Barnichon and Brownlees
(2019). As suggested by those authors, we model impulse responses using B-spline basis
functions, and penalize deviations from a quadratic function of the impulse response horizon
h, up to 20, with the penalty parameter selected using 5-fold cross-validation. For confidence
intervals we similarly follow the suggestions of the authors, using their heuristic procedure
(see p. 525), with the exact same undersmoothing to reduce the bias induced by shrinkage.

B.2 VARs

Recall from Section 2 that the VAR impulse response estimator is based on the reduced-form
VAR

wt = ĉ +
p∑

ℓ=1
Âℓwt−ℓ + ût. (B.2)

with Var(ut) = B̂B̂′ where B̂ is the Cholesky decomposition of the estimated forecast error
variance-covariance matrix. The two identification schemes are implemented as follows:

1. Observed shock. wt contains the observed shock as well as either all other five
observed series, or only the outcome variable of interest. The observed shock is ordered
first in the recursive orthogonalization of the reduced-form innovations.

2. Recursive identification. wt consists of the five observed series, ordered as indicated
in our discussion of the structural monetary and fiscal shock identification schemes
(see Supplemental Appendix C.2). We do not consider a small version of this system,
consistent with the invertibility assumption.

The reduced-form VAR coefficient matrices are estimated using the analytical bias cor-
rection of Pope (1990), following the recommendations in Kilian (1998). The lag length p

is either set exogenously (in our simulations typically to p = 4) or selected using the AIC
for (B.2). We use Eicker-Huber-White standard errors, and bootstrap VAR estimates using
the residual block bootstrap of Brüggemann, Jentsch, and Trenkler (2016). The block size
is chosen using the rule of thumb of Jentsch and Lunsford (2019, p. 2665), giving a block
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size of 20 for our sample size of T = 240. Following the recommendation of Inoue and Kilian
(2020), we report the Efron bootstrap confidence interval.

For shrinkage, we estimate a Bayesian VAR using the default prior recommendations of
Giannone, Lenza, and Primiceri (2015), largely following their replication code, though with
some minor adjustments as discussed in Li, Plagborg-Møller, and Wolf (2024, Appendix B).
We draw 500 times from the posterior, reporting posterior means of the impulse responses
(for our bias-variance trade-off plots) and constructing posterior credible intervals using 5th
and 95th percentiles (for uncertainty assessments).

Appendix C Simulation study details

C.1 DFM estimation

We estimate the encompassing stationary and non-stationary DFMs on the data set of Stock
and Watson (2016), proceeding as in Li, Plagborg-Møller, and Wolf (2024), but additionally
allowing for ARCH disturbances. For the stationary DFM, we follow the exact same steps
as in Online Appendix F.2 (p. 16) of Li, Plagborg-Møller, and Wolf, which in turn replicates
the original analysis by Stock and Watson as well as in Lazarus, Lewis, Stock, and Watson
(2018). For the non-stationary DFM, we first transform variables, then select the number of
factors and lags, and finally estimate the factor VECM just as in Online Appendix C (pp.
2–4) of Li, Plagborg-Møller, and Wolf.

To better capture likely challenges for inference in applied practice, we generalize the es-
timated DFMs by allowing for heteroskedastic errors. Specifically, given the DFM estimated
in the first step, we next estimate separate ARCH(1) models for the reduced-form residuals
in the factor and idiosyncratic equations. For the simulation DGP, we conservatively model
the structural shocks to the factors as following independent ARCH(1) models with ARCH
coefficient equal to the maximum of the estimated reduced-form factor ARCH coefficients;
for the idiosyncratic innovations we just directly use the estimated actual ARCH coefficients,
censored above at 0.7 (this censoring affects only a handful of series and is consistent with
the estimated confidence intervals).

C.2 DGP selection and impulse response estimands

We draw our individual DGPs from the two encompassing DFMs by proceeding as follows.
For all DGPs, we restrict attention to the following 17 oft-used series (with Stock and Watson
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Data Appendix series # in brackets): real GDP (1); real consumption (2); real investment
(6); real government expenditure (12); the unemployment rate (56); personal consumption
expenditure prices (95); the GDP deflator (97); the core consumer price index (121); average
hourly earnings (132); the federal funds rate (142); the 10-year Treasury rate (147); the
BAA 10-year spread (151); an index of the U.S. dollar exchange rate relative to other major
currencies (172); the S&P 500 (181); a real house price index (193); consumer expectations
(196); and real oil prices (202). We then draw several random combinations of five series
from this overall set of salient time series, subject to the constraint that each DGP contains
either the federal funds rate or government spending (for monetary or fiscal shock estimands,
respectively, as discussed further below) as well as at least one real activity series (categories
1–3 in the Stock and Watson data appendix) and one price series (category 6). For both the
stationary and non-stationary DFM we draw 100 monetary and 100 fiscal DGPs in this way.

Observed shock identification. We define the monetary policy shock as the (unique)
linear combination of the innovations in the factor equation that maximizes the impact im-
pulse response of the federal funds rate, and analogously for the fiscal policy shock, with
government spending as the maximized response variable. We then assume that the econo-
metrician directly observes this shock of interest, together with the five observables drawn
from the list of salient time series, as we discussed above. She estimates the propagation of
the shock using either LPs with the shock as the impulse variable (and no contemporaneous
controls) or a recursive VAR with the observed shock ordered first. The outcome of interest
is randomly selected among the observable series, not including the fiscal or monetary policy
instruments (i.e., government purchases or the federal funds rate).

We also estimate LP and VAR specifications that use a smaller set of observables. Here
the system only contains the observed shock as well as the outcome variable of interest.

Recursive identification. For recursive identification, the researcher only observes the
five time series drawn from the encompassing DFM. We then define as the object of interest
impulse responses with respect to a recursive orthogonalization of the reduced-form (Wold)
forecast errors in the VAR(∞) representation of the observables. For monetary policy, we
order the federal funds rate last and then call the orthogonalized innovation to that variable
a monetary policy shock, restricting all other variables to not respond contemporaneously
to monetary policy, as in Christiano, Eichenbaum, and Evans (1999). For fiscal policy, we
order government spending first and then call the innovation to that variable a fiscal policy
shock, thus restricting the fiscal authority to respond to all of the other innovations with

6



a lag, following Blanchard and Perotti (2002). See Li, Plagborg-Møller, and Wolf (2024,
Online Appendix D) for further details.

C.3 Population estimands

For our visual illustration of LP-VAR equivalence in Figure 2.1 we consider one particular
monetary policy DGP from the stationary DFM, with recursive shock identification. The
observables in our system are (Stock and Watson Data Appendix series # in brackets): the
unemployment rate (56); real GDP (1); the core consumer price index (121); the BAA 10-year
spread (151); and the federal funds rate (142). The outcome of interest is unemployment.
We then simulate a large sample, and use recursive LPs and VARs with p ∈ {2, 6, 12} lags
to estimate the propagation of the recursively identified monetary shock, as discussed above.
We compare these finite-lag LP and VAR estimands with the true population projection on
the recursively identified monetary policy innovation, which we estimate using a numerical
approximation to an infinite-lag VAR.

C.4 Degree of misspecification

Given a DGP—i.e., a five-variable (for recursive identification) or six-variable (for observed
shock identification) system randomly drawn from the encompassing DFM—and a lag length
p, we can represent that DGP as a VARMA(p,∞), following the same steps as those outlined
in Montiel Olea, Plagborg-Møller, Qian, and Wolf (2024, Footnote 8). We then obtain the
total degree of misspecification as

√
T × M = ∥α(L)∥ ≡

√√√√ ∞∑
ℓ=1

trace{Dα′
ℓD

−1αℓ},

where D is the variance-covariance matrix of the contemporaneous innovations. Please note
that this computation is relevant only for Footnote 18, where we report the average degree
of misspecification across our stationary DGPs.

Appendix D Supplementary simulation results

We provide several supplementary simulation results to complement our main findings re-
ported in Sections 5.2 and 6.4. We here report detailed results for: recursive identification;
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Recursive identification: bias-variance trade-off

Bias Standard deviation

Figure D.1: Median (across DGPs) of absolute bias
∣∣∣E [θ̂h − θh

]∣∣∣ (left panel) and standard deviation√
Var(θ̂h) (right panel) of the different estimation procedures, relative to

√
1
21
∑20

h=0 θ2
h.

monetary and fiscal policy shocks considered separately; as well as average confidence interval
coverage and width.

D.1 Recursive identification

While our headline results in Sections 5.2 and 6.4 are reported for observed shock identifi-
cation, broadly similar lessons for both the bias-variance trade-off and for inference emerge
under recursive shock identification. Visual summaries are provided in Figures D.1 and D.2.

Figure D.1 shows the bias-variance trade-off, now in the interest of space averaging across
both monetary and fiscal shocks and across stationary and non-stationary DGPs. We see the
same patterns as for observed shock identification: the bias-variance trade-off is stark, long
lag lengths for the VAR align it with LPs, and the variance cost of LPs is large. Differently
from the observed shock case, we do not report any results for “small” specifications, simply
because the control vector is now integral to the economic identifying assumptions.

Figure D.2 displays the coverage of confidence intervals, again across all DGPs. As in the
observed shock case, VARs with lag length selected by standard information criteria signifi-
cantly undercover, while LPs tend to cover well, in particular with bootstrapped confidence
intervals. Also as for observed shocks, bootstrapping is particularly important for accurate
long-horizon coverage in the non-stationary DGPs. Finally we now also see that inclusion of
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Recursive identification: CI coverage

Figure D.2: Fraction of DGPs (both stationary and non-stationary) for which the confidence interval
coverage probability exceeds 80%. See caption for Figure 6.2 for an explanation of the abbreviations
in the legend.

longer lag lengths is more important for LP, simply because those lags now matter for the
structural identification scheme, ensuring that the shock of interest is indeed spanned by the
regression residuals.

D.2 Fiscal and monetary shocks

Our reported conclusions are not sensitive to the type of (policy) shock that we consider. To
establish this, Figures D.3 and D.4 show bias, variance, and coverage results for fiscal shocks
(combining stationary and non-stationary DGPs), while Figures D.3 and D.4 do the same
for monetary shocks. The figures by shock echo the messages of our main figures, which
average across shocks: there is a meaningful bias-variance trade-off; the variance cost of LPs
is high; and only LP methods robustly attain high coverage.

D.3 Coverage probability and CI width

While in Section 6.4 we report the fraction of LP and VAR confidence intervals with coverage
above 80%, Figure D.7 here instead shows the coverage probability (left panel) and median
confidence interval length (right panel) of our different inference procedures averaged across
all DGPs, both stationary and non-stationary. Before averaging the coverage probabilities

9



Observed fiscal shock: bias-variance trade-off

Bias Standard deviation

Figure D.3: Median (across DGPs) of absolute bias
∣∣∣E [θ̂h − θh

]∣∣∣ (left panel) and standard deviation√
Var(θ̂h) (right panel) of the different estimation procedures, relative to

√
1
21
∑20

h=0 θ2
h.

Observed fiscal shock: CI coverage

Figure D.4: Fraction of DGPs (both stationary and non-stationary) for which the confidence interval
coverage probability exceeds 80%. See caption for Figure 6.2 for an explanation of the abbreviations
in the legend.
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Observed monetary shock: bias-variance trade-off

Bias Standard deviation

Figure D.5: Median (across DGPs) of absolute bias
∣∣∣E [θ̂h − θh

]∣∣∣ (left panel) and standard deviation√
Var(θ̂h) (right panel) of the different estimation procedures, relative to

√
1
21
∑20

h=0 θ2
h.

Observed monetary shock: CI coverage

Figure D.6: Fraction of DGPs (both stationary and non-stationary) for which the confidence interval
coverage probability exceeds 80%. See caption for Figure 6.2 for an explanation of the abbreviations
in the legend.
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Observed shock: CI coverage probability & width

Figure D.7: Coverage probabilities (left panel, coverage is censored above at 90%) and median
confidence interval length (right panel) for VAR (red) and LP (blue) confidence intervals, averaged
across all DGPs (both stationary and non-stationary) separately at each horizon. The right panel
normalizes the interval length by the overall magnitude

√
1
21
∑20

h=0 θ2
h of the true impulse response

function prior to averaging across DGPs. See caption for Figure 6.2 for an explanation of the
abbreviations in the legend.

across DGPs, we censor them above at 90% so that over-coverage is not rewarded. The
picture that emerges is yet again consistent with our theoretical and practical messages:
VAR and shrinkage confidence intervals can be quite a bit shorter, but this tends to come at
the cost of (sometimes material) under-coverage, in particular at longer horizons. The VAR
specifications with longer lag lengths yield correct coverage only at those horizons where the
VAR confidence intervals are essentially as wide as those of LP.

Appendix E Probability of the VAR estimate falling
outside the LP interval

In the theoretical framework of Section 3.3, the probability that the VAR estimate falls
outside the LP confidence interval equals

P
(∣∣∣θ̂VAR

h − θ̂LP
h

∣∣∣ > τh,LPz1−a/2
)

≈ P
(∣∣∣N (

bh(p), τ 2
h,LP − τh,VAR(p)2

)∣∣∣ > τh,LPz1−a/2
)

= P

(∣∣∣∣∣N
(

bh(p)
τh,VAR(p) ,

τ 2
h,LP

τ 2
h,VAR(p) − 1

)∣∣∣∣∣ >
τh,LP

τh,VAR(p)z1−a/2

)
,
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Observed shock: VAR point estimates in LP confidence intervals

Figure E.1: Probability that the VAR point estimates are contained in the LP percentile-t bootstrap
confidence intervals, averaged across all DGPs (stationary and non-stationary, monetary and fiscal),
by impulse response horizon. The VAR and LP lag lengths are selected using the AIC.

where the approximation becomes exact asymptotically, due to (3.2) and the fact that the
asymptotic covariance of the VAR and LP estimators equals the variance of the VAR estima-
tor, as shown by Montiel Olea, Plagborg-Møller, Qian, and Wolf (2024). Since the right-hand
side above is increasing in the bias/standard-deviation ratio of the VAR estimator, the bound
(3.3) implies that the probability is no greater than

P

∣∣∣∣∣∣N
√

T × M ×

√√√√ τ 2
h,LP

τ 2
h,VAR(p) − 1,

τ 2
h,LP

τ 2
h,VAR(p) − 1

∣∣∣∣∣∣ >
τh,LP

τh,VAR(p)z1−a/2


= P

∣∣∣N (√
T × M, 1

)∣∣∣ >
z1−a/2√

1 − τ 2
h,VAR(p)/τ 2

h,LP

 .

When 1 − a = 90% and τh,VAR(p)/τh,LP = 0.4, then the above probability bound equals
21.6% when

√
T × M = 1, and 58.1% when

√
T × M = 2. Hence, there exist DGPs with

a moderate amount of misspecification for which it is quite likely that the LP interval does
not contain the VAR estimate.

However, in our empirically calibrated simulation study in Section 6.4, the clear majority
of VAR point estimates do lie inside the LP confidence interval. Figure E.1 illustrates,
plotting the share of VAR point estimates that are inside the LP interval by impulse response
horizon h, averaged over all (stationary and non-stationary, monetary and fiscal) DGPs. The
share is throughout in excess of 80 per cent, and particularly high at short horizons, consistent
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with our theoretical discussion.

14



References

Barnichon, R., and C. Brownlees (2019): “Impulse Response Estimation by Smooth
Local Projections,” The Review of Economics and Statistics, 101(3), 522–530.

Blanchard, O., and R. Perotti (2002): “An Empirical Characterization of the Dynamic
Effects of Changes in Government Spending and Taxes on Output,” Quarterly Journal of
Economics, 117(4), 1329–1368.

Brüggemann, R., C. Jentsch, and C. Trenkler (2016): “Inference in VARs with
conditional heteroskedasticity of unknown form,” Journal of Econometrics, 191(1), 69–85.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (1999): “Monetary policy shocks:
What have we learned and to what end?,” in Handbook of Macroeconomics, ed. by J. Tay-
lor, and M. Woodford, vol. 1, chap. 2, pp. 65–148. Elsevier.

Giannone, D., M. Lenza, and G. E. Primiceri (2015): “Prior selection for vector
autoregressions,” Review of Economics and Statistics, 97(2), 436–451.

Herbst, E. P., and B. K. Johannsen (2024): “Bias in local projections,” Journal of
Econometrics, 240(1), 105655.

Inoue, A., and L. Kilian (2020): “The uniform validity of impulse response inference in
autoregressions,” Journal of Econometrics, 215(2), 450–472.

Jentsch, C., and K. G. Lunsford (2019): “The Dynamic Effects of Personal and Corpo-
rate Income Tax Changes in the United States: Comment,” American Economic Review,
109(7), 2655–78.

Kilian, L. (1998): “Small-sample Confidence Intervals for Impulse Response Functions,”
Review of Economics and Statistics, 80(2), 218–230.

Lazarus, E., D. J. Lewis, J. H. Stock, and M. W. Watson (2018): “HAR Inference:
Recommendations for Practice,” Journal of Business & Economic Statistics, 36(4), 541–
559.

Li, D., M. Plagborg-Møller, and C. K. Wolf (2024): “Local projections vs. VARs:
Lessons from thousands of DGPs,” Journal of Econometrics, 244(2), 105722, Themed
Issue: Macroeconometrics.

15



Montiel Olea, J. L., and M. Plagborg-Møller (2021): “Local Projection Inference
Is Simpler and More Robust Than You Think,” Econometrica, 89(4), 1789–1823.

Montiel Olea, J. L., M. Plagborg-Møller, E. Qian, and C. K. Wolf (2024):
“Double Robustness of Local Projections and Some Unpleasant VARithmetic,” Working
Paper 32495, National Bureau of Economic Research.

Pope, A. L. (1990): “Biases of Estimators in Multivariate Non-Gaussian Autoregressions,”
Journal of Time Series Analysis, 11(3), 249–258.

Ramey, V. A. (2016): “Macroeconomic Shocks and Their Propagation,” in Handbook of
Macroeconomics, ed. by J. B. Taylor, and H. Uhlig, vol. 2, chap. 2, pp. 71–162. Elsevier.

Stock, J. H., and M. W. Watson (2016): “Dynamic factor models, factor-augmented
vector autoregressions, and structural vector autoregressions in macroeconomics,” in
Handbook of Macroeconomics, vol. 2, chap. 8, pp. 415–525. Elsevier.

16


	VARs vs. LPs in empirical work
	Estimation method details
	LPs
	VARs

	Simulation study details
	DFM estimation
	DGP selection and impulse response estimands
	Population estimands
	Degree of misspecification

	Supplementary simulation results
	Recursive identification
	Fiscal and monetary shocks
	Coverage probability and CI width

	Probability of the VAR estimate falling outside the LP interval
	References

